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FPGA P&R

FPGA P&R: the CORE of the FPGA backend CAD flow

» Placement significantly the final routability and timing performance!

'Shih-Chun Chen and Yao-Wen Chang (2017). “FPGA placement and routing”. In: Proc. [CCAD,
pp- 914-921.
*Kevin E Murray et al. (2015). “Timing-driven titan: Enabling large benchmarks and exploring
the gap between academic and commercial CAD”. In: ACM TRETS 8.2, pp. 1-18. 5/27
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FPGA P&R

FPGA P&R: the CORE of the FPGA backend CAD flow

» Placement significantly the final routability and timing performance!
> Routing is generally step, accounting for 41-86% runtime?
» FPGA P&R is deeply tied to the hardware architecture,
» and every FPGA manufacturer needs P&R software — Source of advantage!
FPGA Manufacturer Tailored P&R Tool
o AMDOU v ouwx h
 XILINX JVims.
| A |
NG -

'Shih-Chun Chen and Yao-Wen Chang (2017). “FPGA placement and routing”. In: Proc. [CCAD,
pp- 914-921.
*Kevin E Murray et al. (2015). “Timing-driven titan: Enabling large benchmarks and exploring
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Contributions

> We propose OpenPAREF, an open-source academic FPGA P&R engine that supports
complex industrial FPGA architectures with state-of-the-art (SOTA) placement and
routing algorithms.
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> We propose OpenPAREF, an open-source academic FPGA P&R engine that supports
complex industrial FPGA architectures with state-of-the-art (SOTA) placement and
routing algorithms.

> We implement it with the deep learning toolkit Py Torch, running on both CPU and
GPU platforms with highly flexibility and efficiency.

» We are capable of achieving superior placement results under various constraints
such as , , and

» We can reduce routed wirelength as well as more than 2 < speedup in
placement efficiency compared with other SOTA academic P&R engines.
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OpenPARF Overview
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Hightlighted Features

State-of-the-art P&R Algorithms

> SOTA multi-electrostatics-based global
placement
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Hightlighted Features

State-of-the-art P&R Algorithms .

=/ /)
> SOTA multi-electrostatics-based global () .5/ !
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Multi-Electrostatic-based Placement Flow*

Constrained Optimization Formulation

» Nonlinear placers minimize wirelength

mmey ZWL (%, ),
ecE

1)

» ... while subject to ePlace-series density constraints for each object

type s € S = {LUT, FF, DSP, BRAM, IO}
st. &s(x,y) =0, VseS§,
Augmented Lagrangian Method
» Constrained — unconstrained °
. ~ 1
min - L(xy;A) = W(x,y) + 2; As(@s + 5C.0)
» Update x and y by nonlinear optimization method (e.g., Nestrov method)

» ... and gradually increase X to resolve the constraints

3¢, penalty coefficient, A: Lagrangian multipliers.
4Jing Mai et al. (2022). “Multi-electrostatic FPGA placement considering SLICEL-SLICEM
heterogeneity and clock feasibility”. In: Proc. DAC, pp. 649-654.

)

®)
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SLICEL-SLICEM Heterogeneity

Extended Electrostatic Fields

» Recall the multi-electrostatic-based placement flow ...

min W(x,y) st ®(x,y) =0, Vse$§ (4)
XYy

» Extend the electrostatic fields as

S={ , ,DSP, BRAM, IO} (5)

Asymmetrical Demand and Supply Attriburtes

CLB Slices
> Demand (cell type)

SLICEM
» LUTL field: LUT, Distributed RAM, and SHIFT - o
> LUTM-AL field: Distributed RAM and SHIFT swpy |

> Supply (site type)
> LUTL fleld SLICEL and SLICEM Demand
Distributed
R 11/27

» LUTM-AL field: SLICEM



SLICEL-SLICEM Heterogeneity (II)

Asymmetrical coeffect of LUTL and LUTM-AL
» LUT can be placed in SLICEL or SLICEM
» Distributed RAM and SHIFT can only be placed in SLICEM
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tage CLB-level Routing

Inter-CLB level global routing Logic element level detailed routing
» Fine-grained routing graph
» Coarse-grained routing graph > Generate final routing results

> Provide inter-CLB routing topology » ILP-based tile assignment is proposed
to remedy congestion
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ILP-based Tile Assignment (I)

Problem Formulation
» Route multiple nets inside a tile and its neighbor tile concurrently

» No overflow vertices
» Paths must be connected
> No loop in the paths

@ NetSource Vertex @ RRG Vertex Net Sink Vertex Used Edges —— Unused Edges

1 1 1

() 1 M I (A (A I
1 1 1
1 ® \ | 1 e
1 1 1
| ! | e o
1 1 1 o

® 1 G\._' 1 1 ®
1 1 1
1 1 1

Legal Solution Vertex Overflow Path Not Connected Loop in the Path
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ILP-based Tile Assignment (II)

Integer Linear Programming (ILP) Modeling

1. No overflow vertex
Z R, < cap(v),e € Fl(v) (6)

e,

[Cwrwaok @1

@\".'_:‘,
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ILP-based Tile Assignment (II)

Integer Linear Programming (ILP) Modeling

1. No overflow vertex
Z R, < cap(v),e € Fl(v) (6)

e,

2. Each sink of each net is routed
Sejk < Rejk € SINK(j) @)
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ILP-based Tile Assignment (II)

Integer Linear Programming (ILP) Modeling

1. No overflow vertex
Z R.j < cap(v),e € FI(v)

e’j
2. Each sink of each net is routed
Se,j,k < Re,jvk € SINK(])
3. The signal is sent from source pin of each net

> " Sejk = 1,e € FO(v),v = SOURCE()), Vk € SINK(j)
e,j.k

()

@)

®
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ILP-based Tile Assignment (II)

Integer Linear Programming (ILP) Modeling

1. No overflow vertex
Z R, < cap(v),e € Fl(v) (6)

e,j

[\)

Each sink of each net is routed o
Sejk < Rejk € SINK(j) @)
3. The signal is sent from source pin of each net ?
> " Sejk = 1,e € FO(v),v = SOURCE()), Vk € SINK(j) 8)
e,j.k ‘

4. The signal is received at each sink pin of each net

> Sejk =1,¢ € FI(v),v = SINK(j, k) ©)
e,j.k
5. There is a path from source pin to each sink pin and no e
loop e o x
Z S‘-’in gk = Z Seaulaj:k’ Q '_>

Cin Cout (10)

ein € FI(v), eout € textFO(v),v # SOURCE(j), v ¢ SINK(j) 15/27



The Open-source P&R Framework

Code Components

1. openparf
The core placement and routing tool

2. openparf.ops
A collection of operators that allow the
implementation of various PR
algorithms

3. openparf.placement
A set of APIs for performing placement
tasks

4. openparf.routing
A set of APIs for performing routing
tasks

5. openparf.py_utils
Provides other utility functions for
Python convenience

= README.md )
OpenPARF »
& OpenPARF is an open-source FPGA placement and routing framework build upon the deep learning toolkit
PyTorch. It is designed to be flexible, efficient, and extensible.

« OpenPARF
© More About OpenPARF
‘A Mul

based FPGA P&R Framework

= Reference Flow
= Demo

o Prerequisites
= Build from Source
* Install Dependencies

* Install Gurobi (Optional),
= Build with Docker
* Docker Image
= Using pre-built images

= Building the image yourself
= Running the Docker Image
= Entering the Docker Container
Build and Install OpenPARF
= Get the OpenPARF Source
= Install OpenPARF
= Adjust Build Options (Optional)

o Getting Started
= ISPD 2016/2017 Benchmarks
= Obtaining Benchmarks

= Linking Benchmarks

= Running the Benchmarks

= More Advanced Usages
= Running Benchmarks in Batches
= Vivado Flow for Placement Evaluation
Resources
Releases and Contributing.
The Team

Publications

License 16/27



Experimental Results



Experiments Setup (I)

Implementation
» C++ & Python
» Build upon Pytorch for agile gradient computation
Machine
> Intel(R) Xeon(R) Gold 6230 CPUs (2.10 GHz, 40 cores)
» 512GB RAM
» One NVIDIA RTX 2080Ti GPU
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Experiments Setup (II)

Benchmark Suite
» ISPD 2016 Routability-Driven FPGA Placement Contest
» ISPD 2017 Clock-Aware FPGA Placement Contest
» SLICEL-SLICEM Structure-Aware Industrial Benchmarks
Placers for Comparison
> RippleFPGA
» DREAMPlaceFPGA

Evaluation Flow

— ' —> Fostpace J'_'L> Wirsion
g S EDEERES > Post-place DCPs OpenPARF (Router) Wirelength

e — 1 (Y~ Fouaoet _1+RO““

DOPs mmg DREAMPlaceFPGA Pasi-plzes DORs —|-> OpenPARF (Router) Wirelength

Routing Data I _I_> Routed
g OpenPARF (Placer) —> Post-place DCPs —I> OpenPARF (Router) | Wirelength
L Routing StageJ
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ISPD 2016 Routability-Driven FPGA Placement Contest

Routed Wirelength Comparison on ISPD 2016
> 12.7% better than RippleFPGA > 0.4% better than DREAMP1aceFPGA

I RippleFPGA [ DREAMP|aceFPGA = OpenPARF

.35 T T T T T T T T T T T T
. 301

. 25
. 201
.15
. 101
. 051
. 001
. 951
. 90-

Norm. Routed WL

O O - — A a e m a

)

D
SR o

Sl
SR 3

Q
& o

A
& »

) N P ® o D
S T Y oa® S SRS

<

OpenPARF significantly outperforms other placers on routed wirelength. 2027



ISPD 2016 Routability-Driven FPGA Placement Contest

Placement Runtime Comparison on ISPD 2016

» 2.771x faster RippleFPGA > 1.272x slower than DREAMPlaceFPGA

BN RippleFPGA [ DREAMPlaceFPGA [ OpenPARF

u

N w )

Norm. Placement Runtime
=

o

O

QGPQ%

¢ ?(’wg

Q
¢ S

¢ o

¢ ‘?C’Pﬂ

<« <
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ISPD 2017 Clock-Aware FPGA Placement Contest

Routed Wirelength Comparison on ISPD 2017 °
> 12.8% better than RippleFPGA

I RippleFPGA 1 OpenPARF
1.35 T T T T

T T T T T T T

1.30
|
125
- 1.20
Q
51.15
o
€ 1.10
€1.05
21.00
0.95

0.90
X
?‘?OPQ\’ ??(’P@ %"(’P@ ??c’w %?C’P@ ??0@6 ?‘?G@ ??C’PQ% ??C’ng ¢ ¢
¥ ok T T R R R QR QT ¥ o

*DREAMP 1aceFPGA is not applicable to this benchmark suite.

?(,\Q‘Q ??(,P:\\' ?(,P:\’L Q?(,P:\’E
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ISPD 2017 Clock-Aware FPGA Placement Contest

Placement Runtime Comparison on ISPD 2017

» 2251 x faster than RippleFPGA

I RippleFPGA [ OpenPARF

3 I I I I I I I I I I I

Norm. Placement Runtime
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Experiments on SLICEL-SLICEM Industrial Benchmarks

OpenPARF show notable performance and efficiency on industrial benchmarks.

> 21K - 284K cells
» Distributed RAMs and SHIFTs (

> DSPs, BRAMs and CARRYs
Desi #LUT /#FE/ #Distributed #Net OpenPARF

eSIEN | 4BRAM/#DSP  RAM + #SHIFT PRT® RRT’ RWLSP
INDO1 17K/11K/0/13 9 52492 72.36 10 90
INDO2 11K/10K/0/24 6 26678 77.82 15 100
INDO3 109K/12K/0/0 0 121554 | 109.54 108 1021
INDO4 29K /17K /0/16 218 60968 69.39 19 283
INDOS5 | 64K/191K/64/928 29K 371808 | 126.38 109 2360
INDO6 112K /65K /21/0 0 221182 | 88.28 176 1593
INDO7 | 40K/156K/89/768 26K 294075 | 140.33 68 1450

®Placement Runtime (Seconds).

7R0uting Runtime (Minutes).

24/27
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