OpenPARF: An Open-Source Placement and Routing Framework
for Large-Scale Heterogeneous FPGAs with Deep Learning Toolkit

Jing Mai!, Jiarui Wangl, Zhixiong Di, Guojie Luo!, Yun Liangl, Yibo Lin'

'Peking University
2Southwest Jiaotong University

jingmai@pku.edu.cn

m

@ ﬂt;f. »‘é?

PEKING UNIVERSITY

HEXAAE

Southwest J ng Uni

October 26, 2023

Outline

@ Introduction

@ The OpenPARF Framework

@ Experimental Results

@ Conclusion & Future Work

2/27

Introduction

HDL
(VHDL /
Verilog)

Logic Synthesis

— 3
General Boolean
Network
(AIG)

Technical Mapping

v

Netlist

Y

Bitstream

HDL

» Hardware design is modeled in a Hardware Description

Language (HDL)

4/27

FPGA CAD Flow

—
HDL
(VHDL /
Verilog)

Logic Synthesis
— 3

General Boolean
Network
(AIG)

Technical Mapping
v

Netlist

Y

Bitstream

HDL

» Hardware design is modeled in a Hardware Description
Language (HDL)
Frontend
> A FPGA "compiler” (synthesis tool) translates the HDL

into a general Boolean network, e.g, And-Inverter Graph
(AIG)

4/27

FPGA CAD Flow

HDL
5

HDL » Hardware design is modeled in a Hardware Description
(\\//e':%g; Language (HDL)
Frontend
. .
> A FPGA "compiler” (synthesis tool) translates the HDL
— into a general Boolean network, e.g, And-Inverter Graph
General Boolean
Network (AIG)

(AIG)

Technical Mapping
v

Netlist

Y

> which is then to a FPGA technology tailored

Bitstream

4/27

FPGA CAD Flow

—
HDL
(VHDL /
Verilog)

Logic Synthesis
— 3

General Boolean
Network
(AIG)

Technical Mapping
v

Netlist

Y

Bitstream

HDL

» Hardware design is modeled in a Hardware Description
Language (HDL)

Frontend

> A FPGA "compiler” (synthesis tool) translates the HDL
into a general Boolean network, e.g, And-Inverter Graph
(AIG)

> which is then to a FPGA technology tailored

Backend

> The netlist components are on the FPGA laytout

4/27

FPGA CAD Flow

—
HDL
(VHDL /
Verilog)

Logic Synthesis
— 3

General Boolean
Network
(AIG)

Technical Mapping
v

Netlist

Y

Bitstream

HDL

» Hardware design is modeled in a Hardware Description
Language (HDL)
Frontend
> A FPGA "compiler” (synthesis tool) translates the HDL

into a general Boolean network, e.g, And-Inverter Graph
(AIG)

> which is then to a FPGA technology tailored

Backend
> The netlist components are on the FPGA laytout
> and the connecting signals are through the

interconnection network

4/27

FPGA CAD Flow

—
HDL
(VHDL /
Verilog)

Logic Synthesis
— 3

General Boolean
Network
(AIG)

Technical Mapping
v

Netlist

Y

Bitstream

HDL

» Hardware design is modeled in a Hardware Description
Language (HDL)
Frontend
> A FPGA "compiler” (synthesis tool) translates the HDL

into a general Boolean network, e.g, And-Inverter Graph
(AIG)

> which is then to a FPGA technology tailored

Backend
> The netlist components are on the FPGA laytout
> and the connecting signals are through the
interconnection network
> A is finally generated for the FPGA
configuration

4/27

FPGA P&R

FPGA P&R: the CORE of the FPGA backend CAD flow

» Placement significantly the final routability and timing performance!

'Shih-Chun Chen and Yao-Wen Chang (2017). “FPGA placement and routing”. In: Proc. [CCAD,
pp- 914-921.
*Kevin E Murray et al. (2015). “Timing-driven titan: Enabling large benchmarks and exploring
the gap between academic and commercial CAD”. In: ACM TRETS 8.2, pp. 1-18. 5/27

FPGA P&R

FPGA P&R: the CORE of the FPGA backend CAD flow

» Placement significantly the final routability and timing performance!

> Routing is generally step, accounting for 41-86% runtime?

'Shih-Chun Chen and Yao-Wen Chang (2017). “FPGA placement and routing”. In: Proc. [CCAD,
pp- 914-921.
*Kevin E Murray et al. (2015). “Timing-driven titan: Enabling large benchmarks and exploring
the gap between academic and commercial CAD”. In: ACM TRETS 8.2, pp. 1-18. 5/27

FPGA P&R

FPGA P&R: the CORE of the FPGA backend CAD flow

» Placement significantly the final routability and timing performance!
> Routing is generally step, accounting for 41-86% runtime?
» FPGA P&R is deeply tied to the hardware architecture,
» and every FPGA manufacturer needs P&R software — Source of advantage!
FPGA Manufacturer Tailored P&R Tool
o AMDOU v ouwx h
 XILINX JVims.
| A |
NG -

'Shih-Chun Chen and Yao-Wen Chang (2017). “FPGA placement and routing”. In: Proc. [CCAD,
pp- 914-921.
*Kevin E Murray et al. (2015). “Timing-driven titan: Enabling large benchmarks and exploring
the gap between academic and commercial CAD”. In: ACM TRETS 8.2, pp. 1-18. 5/27

Contributions

> We propose OpenPAREF, an open-source academic FPGA P&R engine that supports
complex industrial FPGA architectures with state-of-the-art (SOTA) placement and
routing algorithms.

6/27

Contributions

> We propose OpenPAREF, an open-source academic FPGA P&R engine that supports
complex industrial FPGA architectures with state-of-the-art (SOTA) placement and
routing algorithms.

> We implement it with the deep learning toolkit Py Torch, running on both CPU and
GPU platforms with highly flexibility and efficiency.

6/27

Contributions

> We propose OpenPAREF, an open-source academic FPGA P&R engine that supports
complex industrial FPGA architectures with state-of-the-art (SOTA) placement and
routing algorithms.

> We implement it with the deep learning toolkit Py Torch, running on both CPU and
GPU platforms with highly flexibility and efficiency.

» We are capable of achieving superior placement results under various constraints
such as , , and

6/27

Contributions

> We propose OpenPAREF, an open-source academic FPGA P&R engine that supports
complex industrial FPGA architectures with state-of-the-art (SOTA) placement and
routing algorithms.

> We implement it with the deep learning toolkit Py Torch, running on both CPU and
GPU platforms with highly flexibility and efficiency.

» We are capable of achieving superior placement results under various constraints
such as , , and

» We can reduce routed wirelength as well as more than 2 < speedup in
placement efficiency compared with other SOTA academic P&R engines.

6/27

The OpenPARF Framework

OpenPARF Overview

Circuit Netlist SLICEL-SLICEM

Heterogeneity

Placer
Multi-Electrostatics— Routability
_/ based Global Placement Optimization
v

Clock Routing

FPGA Architecture
[Direct Legalization

Feasibility
I v
ISM-based Detailed
/ Placement
Router
Pin

Rearrangement { Global Routing)
Search Space - - Placement &

Expansion [Detailed Routing |—> Routing Results

Net Reordering

8/27

Hightlighted Features

State-of-the-art P&R Algorithms

> SOTA multi-electrostatics-based global
placement

9/27

Hightlighted Features

State-of-the-art P&R Algorithms

» SOTA multi-electrostatics-based global
placement

> SOTA two-stage CLB-level FPGA

routing Inter-CLB Global Routing

Logic Element Level
Detailed Routing

9/27

Hightlighted Features

State-of-the-art P&R Algorithms
CLB Slices
> SOTA multi-electrostatics-based global
placement
SLICEM
> SOTA two-stage CLB-level FPGA
routing \ S
Supply | , :’
More P&R Constraints v v
> SLICEL-SLICEM heterogeneity ‘ L ’ ‘ LOTV-AL ’
Demand

Distributed

RAM

9/27

Hightlighted Features

State-of-the-art P&R Algorithms

> SOTA multi-electrostatics-based global

placement o D D D 0
> SOTA two-stage CLB-level FPGA D O o o D
routing D D D
More P&R Constraints o
» SLICEL-SLICEM heterogeneity O D <
> Routability optimization D* o *

Uncongested Region Congested Region
Smaller Cell Inflation Larger Cell Inflation

9/27

Hightlighted Features

State-of-the-art P&R Algorithms .

=/ /)
> SOTA multi-electrostatics-based global () .5/ !
placement = L= /. 1
> SOTA two-stage CLB-level FPGA E ! = E
routing 174 = , /i

| d T
More P&R Constraints ,: .: — : E
A/ i |
» SLICEL-SLICEM heterogeneity T =, = 4
> Routability optimization | [[: |
> Clock routing feasibility ! 1/ 1 ' I

=)

\\\\
\;'f

> ... 2 2

9/27

Multi-Electrostatic-based Placement Flow*

Constrained Optimization Formulation

» Nonlinear placers minimize wirelength

mmey ZWL (%,),
ecE

1)

» ... while subject to ePlace-series density constraints for each object

type s € S = {LUT, FF, DSP, BRAM, IO}
st. &s(x,y) =0, VseS§,
Augmented Lagrangian Method
» Constrained — unconstrained °
. ~ 1
min - L(xy;A) = W(x,y) + 2; As(@s + 5C.0)
» Update x and y by nonlinear optimization method (e.g., Nestrov method)

» ... and gradually increase X to resolve the constraints

3¢, penalty coefficient, A: Lagrangian multipliers.
4Jing Mai et al. (2022). “Multi-electrostatic FPGA placement considering SLICEL-SLICEM
heterogeneity and clock feasibility”. In: Proc. DAC, pp. 649-654.

)

®)

10/27

SLICEL-SLICEM Heterogeneity

Extended Electrostatic Fields

» Recall the multi-electrostatic-based placement flow ...

min W(x,y) st ®(x,y) =0, Vse$§ (4)
XYy

» Extend the electrostatic fields as

S={ , ,DSP, BRAM, IO} (5)

Asymmetrical Demand and Supply Attriburtes

CLB Slices
> Demand (cell type)

SLICEM
» LUTL field: LUT, Distributed RAM, and SHIFT - o
> LUTM-AL field: Distributed RAM and SHIFT swpy |

> Supply (site type)
> LUTL fleld SLICEL and SLICEM Demand
Distributed
R 11/27

» LUTM-AL field: SLICEM

SLICEL-SLICEM Heterogeneity (II)

Asymmetrical coeffect of LUTL and LUTM-AL
» LUT can be placed in SLICEL or SLICEM
» Distributed RAM and SHIFT can only be placed in SLICEM

. LuT l SHIFT D SLICEL SLICEM

Column Column
LUTL Field LUTM-AL Field Two Fields
CLor
PLUT QruT PLUTMAL [Prurarar +
PrLuTaaL

Initial 1.0

0.

s

Solution
1

v

Solution
v

Solution
m

X

Solution
v

X

Low L0
0.

>

L0

Low 10T High High

Low L0t High High
0

e] e ——
[Vi et =t e

>

12/27

tage CLB-level Routing

Inter-CLB level global routing Logic element level detailed routing
» Fine-grained routing graph
» Coarse-grained routing graph > Generate final routing results

> Provide inter-CLB routing topology » ILP-based tile assignment is proposed
to remedy congestion

Logic Element Level
Detailed Routing
Inter-CLB Global Routing L AN

! >
o | — 1
4 SN LuT] ! '
¢ N = I - N I
H o ol | ! i) =l o Rip-up Congested Sinks '
H ol & L3 Oh & bl | & '
! 3| ® 3 | | &[] ® @ | & '
1 | " "
\ Fu | L FU | Fu | || FU A* Pathfinding Search !
i
| : | |
: 1] LUT|] ! (] (1] :
! LuT] ! '
! '
I 0l |8 H B8] ! bl 8 bH 3 \
1 || @ o ® | o | @ || @ 1
i | '
! VI I TV O O-VID I Ful L H
'
! 1
I

(@ [e T

13/27

ILP-based Tile Assignment (I)

Problem Formulation
» Route multiple nets inside a tile and its neighbor tile concurrently

» No overflow vertices
» Paths must be connected
> No loop in the paths

@ NetSource Vertex @ RRG Vertex Net Sink Vertex Used Edges —— Unused Edges

1 1 1

() 1 M I (A (A I
1 1 1
1 ® \ | 1 e
1 1 1
| ! | e o
1 1 1 o

® 1 G\._' 1 1 ®
1 1 1
1 1 1

Legal Solution Vertex Overflow Path Not Connected Loop in the Path

14/27

ILP-based Tile Assignment (II)

Integer Linear Programming (ILP) Modeling

1. No overflow vertex
Z R, < cap(v),e € Fl(v) (6)

e,

[Cwrwaok @1

@\".'_:‘,

15/27

ILP-based Tile Assignment (II)

Integer Linear Programming (ILP) Modeling

1. No overflow vertex
Z R, < cap(v),e € Fl(v) (6)

e,

2. Each sink of each net is routed
Sejk < Rejk € SINK(j) @)

15/27

ILP-based Tile Assignment (II)

Integer Linear Programming (ILP) Modeling

1. No overflow vertex
Z R.j < cap(v),e € FI(v)

e’j
2. Each sink of each net is routed
Se,j,k < Re,jvk € SINK(])
3. The signal is sent from source pin of each net

> " Sejk = 1,e € FO(v),v = SOURCE()), Vk € SINK(j)
e,j.k

()

@)

®

00O

15/27

ILP-based Tile Assignment (II)

Integer Linear Programming (ILP) Modeling

1. No overflow vertex
Z R.j < cap(v),e € FI(v)

e,j

2. Each sink of each net is routed
Se,j,k < Re,jvk € SINK(])
3. The signal is sent from source pin of each net

> " Sejk = 1,e € FO(v),v = SOURCE()), Vk € SINK(j)
e,j.k

4. The signal is received at each sink pin of each net

> Sejk =1,¢ € FI(v),v = SINK(j, k)
e,j.k

()

@)

®

©)

15/27

ILP-based Tile Assignment (II)

Integer Linear Programming (ILP) Modeling

1. No overflow vertex
Z R, < cap(v),e € Fl(v) (6)

e,j

[\)

Each sink of each net is routed o
Sejk < Rejk € SINK(j) @)
3. The signal is sent from source pin of each net ?
> " Sejk = 1,e € FO(v),v = SOURCE()), Vk € SINK(j) 8)
e,j.k ‘

4. The signal is received at each sink pin of each net

> Sejk =1,¢ € FI(v),v = SINK(j, k) ©)
e,j.k
5. There is a path from source pin to each sink pin and no e
loop e o x
Z S‘-’in gk = Z Seaulaj:k’ Q '_>

Cin Cout (10)

ein € FI(v), eout € textFO(v),v # SOURCE(j), v ¢ SINK(j) 15/27

The Open-source P&R Framework

Code Components

1. openparf
The core placement and routing tool

2. openparf.ops
A collection of operators that allow the
implementation of various PR
algorithms

3. openparf.placement
A set of APIs for performing placement
tasks

4. openparf.routing
A set of APIs for performing routing
tasks

5. openparf.py_utils
Provides other utility functions for
Python convenience

= README.md)
OpenPARF »
& OpenPARF is an open-source FPGA placement and routing framework build upon the deep learning toolkit
PyTorch. It is designed to be flexible, efficient, and extensible.

« OpenPARF
© More About OpenPARF
‘A Mul

based FPGA P&R Framework

= Reference Flow
= Demo

o Prerequisites
= Build from Source
* Install Dependencies

* Install Gurobi (Optional),
= Build with Docker
* Docker Image
= Using pre-built images

= Building the image yourself
= Running the Docker Image
= Entering the Docker Container
Build and Install OpenPARF
= Get the OpenPARF Source
= Install OpenPARF
= Adjust Build Options (Optional)

o Getting Started
= ISPD 2016/2017 Benchmarks
= Obtaining Benchmarks

= Linking Benchmarks

= Running the Benchmarks

= More Advanced Usages
= Running Benchmarks in Batches
= Vivado Flow for Placement Evaluation
Resources
Releases and Contributing.
The Team

Publications

License 16/27

Experimental Results

Experiments Setup (I)

Implementation
» C++ & Python
» Build upon Pytorch for agile gradient computation
Machine
> Intel(R) Xeon(R) Gold 6230 CPUs (2.10 GHz, 40 cores)
» 512GB RAM
» One NVIDIA RTX 2080Ti GPU

18/27

Experiments Setup (II)

Benchmark Suite
» ISPD 2016 Routability-Driven FPGA Placement Contest
» ISPD 2017 Clock-Aware FPGA Placement Contest
» SLICEL-SLICEM Structure-Aware Industrial Benchmarks
Placers for Comparison
> RippleFPGA
» DREAMPlaceFPGA

Evaluation Flow

— ' —> Fostpace J'_'L> Wirsion
g S EDEERES > Post-place DCPs OpenPARF (Router) Wirelength

e — 1 (Y~ Fouaoet _1+RO““

DOPs mmg DREAMPlaceFPGA Pasi-plzes DORs —|-> OpenPARF (Router) Wirelength

Routing Data I _I_> Routed
g OpenPARF (Placer) —> Post-place DCPs —I> OpenPARF (Router) | Wirelength
L Routing StageJ

19/27

ISPD 2016 Routability-Driven FPGA Placement Contest

Routed Wirelength Comparison on ISPD 2016
> 12.7% better than RippleFPGA > 0.4% better than DREAMP1aceFPGA

I RippleFPGA [DREAMP|aceFPGA = OpenPARF

.35 T T T T T T T T T T T T
. 301

. 25
. 201
.15
. 101
. 051
. 001
. 951
. 90-

Norm. Routed WL

O O - — A a e m a

)

D
SR o

Sl
SR 3

Q
& o

A
& »

) N P ® o D
S T Y oa® S SRS

<

OpenPARF significantly outperforms other placers on routed wirelength. 2027

ISPD 2016 Routability-Driven FPGA Placement Contest

Placement Runtime Comparison on ISPD 2016

» 2.771x faster RippleFPGA > 1.272x slower than DREAMPlaceFPGA

BN RippleFPGA [DREAMPlaceFPGA [OpenPARF

u

N w)

Norm. Placement Runtime
=

o

O

QGPQ%

¢ ?(’wg

Q
¢ S

¢ o

¢ ‘?C’Pﬂ

<« <

21/27

ISPD 2017 Clock-Aware FPGA Placement Contest

Routed Wirelength Comparison on ISPD 2017 °
> 12.8% better than RippleFPGA

I RippleFPGA 1 OpenPARF
1.35 T T T T

T T T T T T T

1.30
|
125
- 1.20
Q
51.15
o
€ 1.10
€1.05
21.00
0.95

0.90
X
?‘?OPQ\’ ??(’P@ %"(’P@ ??c’w %?C’P@ ??0@6 ?‘?G@ ??C’PQ% ??C’ng ¢ ¢
¥ ok T T R R R QR QT ¥ o

*DREAMP 1aceFPGA is not applicable to this benchmark suite.

?(,\Q‘Q ??(,P:\\' ?(,P:\’L Q?(,P:\’E

22/27

ISPD 2017 Clock-Aware FPGA Placement Contest

Placement Runtime Comparison on ISPD 2017

» 2251 x faster than RippleFPGA

I RippleFPGA [OpenPARF

3 I I I I I I I I I I I

Norm. Placement Runtime

23/27

Experiments on SLICEL-SLICEM Industrial Benchmarks

OpenPARF show notable performance and efficiency on industrial benchmarks.

> 21K - 284K cells
» Distributed RAMs and SHIFTs (

> DSPs, BRAMs and CARRYs
Desi #LUT /#FE/ #Distributed #Net OpenPARF

eSIEN | 4BRAM/#DSP RAM + #SHIFT PRT® RRT’ RWLSP
INDO1 17K/11K/0/13 9 52492 72.36 10 90
INDO2 11K/10K/0/24 6 26678 77.82 15 100
INDO3 109K/12K/0/0 0 121554 | 109.54 108 1021
INDO4 29K /17K /0/16 218 60968 69.39 19 283
INDOS5 | 64K/191K/64/928 29K 371808 | 126.38 109 2360
INDO6 112K /65K /21/0 0 221182 | 88.28 176 1593
INDO7 | 40K/156K/89/768 26K 294075 | 140.33 68 1450

®Placement Runtime (Seconds).

7R0uting Runtime (Minutes).

24/27

$Routed Wirelength.

Conclusion & Future Work

Conclusion & Future Work

Conclusion

> OpenPARF: an open-source placement and routing framework for large-scale FPGAs

26/27

Conclusion & Future Work

Conclusion
> OpenPARF: an open-source placement and routing framework for large-scale FPGAs

» We build OpenPARF upon the deep learning toolkit PyTorch for agile gradient
computation and flexible programming interfaces

26/27

Conclusion & Future Work

Conclusion
> OpenPARF: an open-source placement and routing framework for large-scale FPGAs

» We build OpenPARF upon the deep learning toolkit PyTorch for agile gradient
computation and flexible programming interfaces

> We resolve the by the SOTA asymmetrical
multi-electrostatic FPGA placement algorithms

26/27

Conclusion & Future Work

Conclusion
> OpenPARF: an open-source placement and routing framework for large-scale FPGAs

» We build OpenPARF upon the deep learning toolkit PyTorch for agile gradient
computation and flexible programming interfaces

> We resolve the by the SOTA asymmetrical
multi-electrostatic FPGA placement algorithms

» We harness the Lagrangian relaxation methodology to resolve multiple
placement objectives

26/27

Conclusion & Future Work

Conclusion

>

>

OpenPAREF: an open-source placement and routing framework for large-scale FPGAs

We build OpenPARF upon the deep learning toolkit PyTorch for agile gradient
computation and flexible programming interfaces

We resolve the by the SOTA asymmetrical
multi-electrostatic FPGA placement algorithms
We harness the Lagrangian relaxation methodology to resolve multiple

placement objectives

We settle the large-scale irregular FPGA routing problem by the SOTA
two-stage negotiation-based routing algorithms

26/27

Conclusion & Future Work

Conclusion

>

>

OpenPAREF: an open-source placement and routing framework for large-scale FPGAs

We build OpenPARF upon the deep learning toolkit PyTorch for agile gradient
computation and flexible programming interfaces

We resolve the by the SOTA asymmetrical
multi-electrostatic FPGA placement algorithms
We harness the Lagrangian relaxation methodology to resolve multiple

placement objectives

> We settle the large-scale irregular FPGA routing problem by the SOTA
two-stage negotiation-based routing algorithms
Future Work
|

GPU-accelerated legalization / routing

26/27

Conclusion & Future Work

Conclusion

>

>

OpenPAREF: an open-source placement and routing framework for large-scale FPGAs

We build OpenPARF upon the deep learning toolkit PyTorch for agile gradient
computation and flexible programming interfaces

We resolve the by the SOTA asymmetrical
multi-electrostatic FPGA placement algorithms
We harness the Lagrangian relaxation methodology to resolve multiple

placement objectives

> We settle the large-scale irregular FPGA routing problem by the SOTA
two-stage negotiation-based routing algorithms
Future Work
|

>

GPU-accelerated legalization / routing

Look-ahead Timing Prediction (LATP) for timing-driven placement

26/27

Conclusion & Future Work

Conclusion

>

>

OpenPAREF: an open-source placement and routing framework for large-scale FPGAs

We build OpenPARF upon the deep learning toolkit PyTorch for agile gradient
computation and flexible programming interfaces

We resolve the by the SOTA asymmetrical
multi-electrostatic FPGA placement algorithms
We harness the Lagrangian relaxation methodology to resolve multiple

placement objectives

> We settle the large-scale irregular FPGA routing problem by the SOTA
two-stage negotiation-based routing algorithms
Future Work
|

>

>

GPU-accelerated legalization / routing
Look-ahead Timing Prediction (LATP) for timing-driven placement

Fence region-aware placement

26/27

THANK YOU!

	Introduction
	The OpenPARF Framework
	Experimental Results
	Conclusion & Future Work

	anm0:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

