

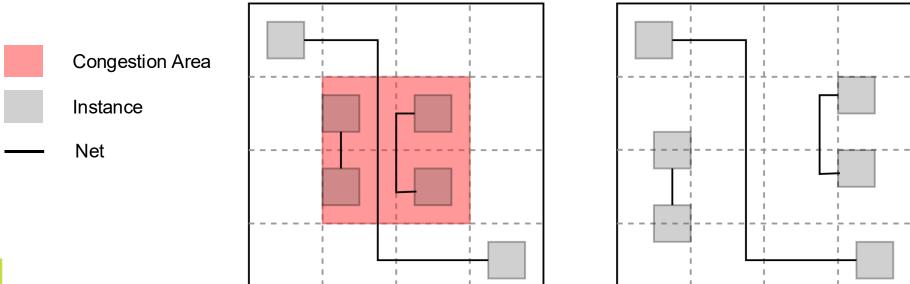
RUPlace: Optimizing Routability via Unified Placement and Routing Formulation

Yifan Chen, Jing Mai, Zuodong Zhang, Yibo Lin Peking University, Beijing, China chenyifan2019@pku.edu.cn

Background

Routability Optimization in Placement

- Placement is critical to VLSI physical design, especially routability
- Increasing chip complexity → congestion challenges

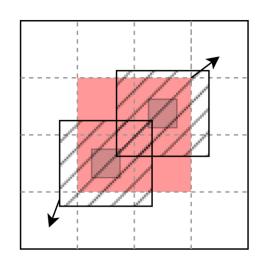


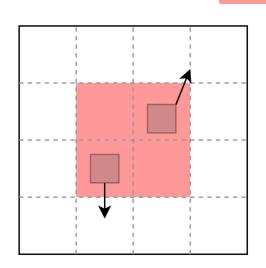
A typical example of routability optimization in placement.

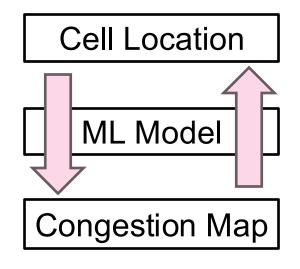
Limitations of Existing Approaches

- Heuristic-based cell inflation
 - [Lin+, DAC2014][He+, TODAES2016] [Liu+, TCAD2023]
- Force-based methods
 - [Huang+, TCAD2018][Lin+, ICCAD2021]
- ML methods
 - [Liu+, DATE2021][Park+, ICCAD2023]

Lack theoretical foundations
Treat routing as black-box







Contributions

- Unified Formulation of placement and routing optimization
- ADMM-based algorithm with Wasserstein distance and bilevel optimization
- Convex optimization-based cell inflation with modularity-based clustering
- Achieves substantial congestion reduction, better wirelength

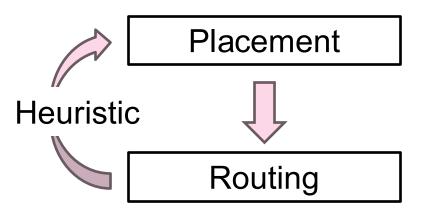
Methodologies

Overview - Unified Placement & Routing

Traditional Flow

Unified Placement & Routing

2 Optimization Problems



Unified
Placement
&
Routing

Depart
: Theoretical Guidance
Subproblem n

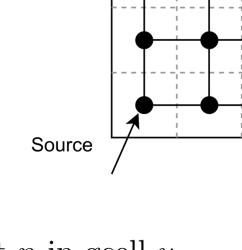
Global Routing Formulation

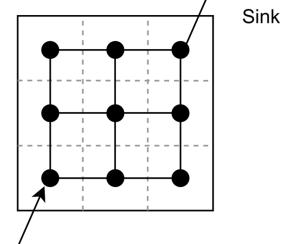
• ILP based Global Routing (Network Flow)

$$\mathcal{R}: \min_{f} \quad R(f) = \sum_{e \in E} c_e \sum_{n \in N} f_{n,e} + \mu CONG(f),$$
s.t.
$$Af = h(x),$$

$$f_{n,e} \in \{0,1\}, \forall n \in N, e \in E,$$

$$CONG(f) = ||\max(\sum_{n} f_{n,e} - cap_{e}, 0)||.$$





$$h(x)_{n,u} = \begin{cases} +1, & \text{if the source pin of net } n \text{ in gcell } u, \\ -1, & \text{if the sink pin of net } n \text{ in gcell } u, \\ 0, & \text{otherwise,} \end{cases}$$

Unified Placement & Routing Formulation

Analytical Placement

$$\min_{x} \quad WL(x),$$

s.t.
$$d_{i}(x) \leq d_{t}, \forall i \in B,$$

$$\mathcal{R}: \min_f \quad R(f)$$
 s.t. $Af = h(x),$
$$f_{n,e} \in \{0,1\}, \forall n \in N, e \in E,$$

Routability-driven Placement

$$\min_{x,f} R(f),$$
s.t. $d_i(x) \le d_t, \forall i \in B,$

$$Af = h(x),$$

$$f_{n,e} \in \{0,1\}, \forall n \in N, e \in E,$$

Overview - Solve Unified P&R

Unified
Placement
&
Routing

ADMM

Placement Related Subproblem 1

Penalized Analytical Placement

Routing Related Subproblem 2

Bilevel Loptimization

Gradient Descent

Global Routing

Multiplier Update

Solve by ADMM

ADMM framework
$$t^{k+1}, f^{k+1} = \operatorname{argmin}_{f,t} \quad L(x^k, t, f, \lambda^k, \sigma)$$

$$x^{k+1} = \operatorname{argmin}_x \quad L(x, t^{k+1}, f^{k+1}, \lambda^k, \sigma)$$

$$\lambda^{k+1} = \lambda^k + \sigma(x^{k+1} - t^{k+1})$$

• Sub1: $t^{k+1}, f^{k+1} = \operatorname{argmin}_{f,t} \quad L(x^k, t, f, \lambda^k, \sigma)$ $t^{k+1} = \operatorname{argmin}_t \quad \mathcal{R}(t) + \lambda^{k\dagger}(x^k - t) + \frac{\sigma}{2}(x^k - t)^2$

$$\mathcal{R}(t) + \lambda^{k\dagger}(x^k - t) + \frac{\sigma}{2}(x^k - t)^2$$

Routing Problem

$$x^{k+1} = \operatorname{argmin}_{x} L(x, t^{k+1}, f^{k+1}, \lambda^{k}, \sigma)$$

• Sub2:
$$x^{k+1} = \operatorname{argmin}_x L(x, t^{k+1}, f^{k+1}, \lambda^k, \sigma)$$

$$\min_x WL(x) + \lambda^{k\dagger}(x - t^{k+1}) + \frac{\sigma}{2}(x - t^{k+1})^2,$$

s.t. $d_i(x) \leq d_t, \forall i \in B$. Penalized Analytical Placement

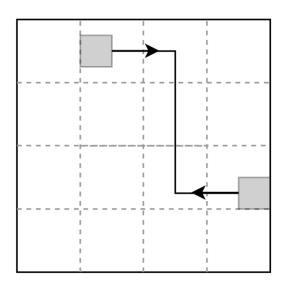
Solve Routing-Related Subproblem

• Bilevel Optimization $t^{k+1} = \operatorname{argmin}_t \quad \mathcal{R}(t) + \lambda^{k\dagger} (x^k - t) + \frac{o}{2} (x^k - t)^2$

$$f^{k+1} = \mathcal{R}(t^k), \qquad \text{Solve by Global Router}$$

$$t^{k+1} = \operatorname{argmin}_t \quad \hat{\mathcal{R}}(f^{k+1}, t) + \lambda^{k\dagger}(x^k - t) + \frac{\sigma}{2}(x^k - t)^2$$

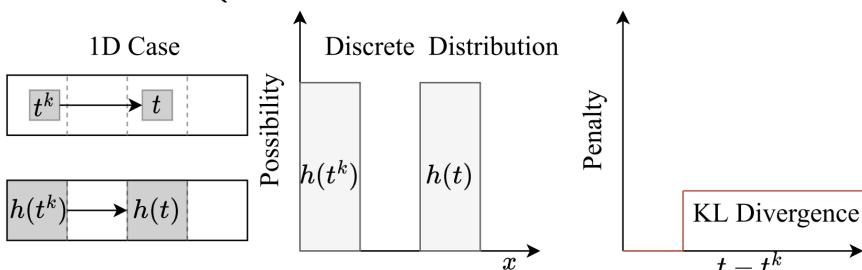
Approximation of routing in the neighborhood of f^{k+1} Only move talk the routed wires



Neighborhood Constraint Issue

- h(t): a discrete distribution
- Metrics like KL divergence: No overlap → constant distance, zero gradient

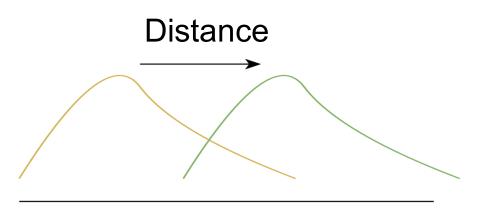
$$h(x)_{n,u} = \begin{cases} +1, & \text{if the source pin of net } n \text{ in gcell } u, \\ -1, & \text{if the sink pin of net } n \text{ in gcell } u, \\ 0, & \text{otherwise,} \end{cases}$$

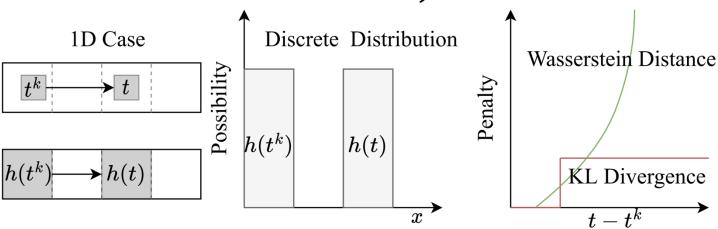


Wasserstein Distance

 The Wasserstein distance is used to measure the distance between two probability distributions.

$$W_p(a,b) = \left\{ \inf_{\pi \in \Pi(a,b)} \sum_{(x_a,x_b) \in M \times N} ||x_a - x_b||^p d\pi(x_a, x_b) \right\}^{1/p},$$





Approximation of Routing

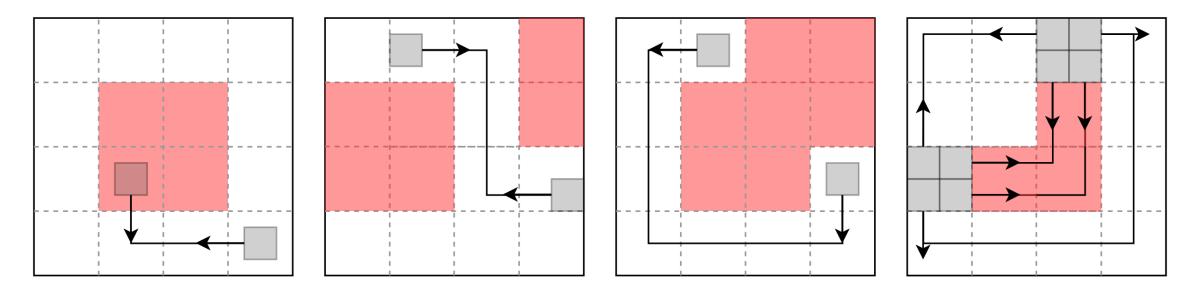
Ensure t in the neighborhood, add Wasserstein distance penalty

$$t^{k+1} = \operatorname{argmin}_{t} \quad \hat{\mathcal{R}}(f^{k+1}, t) + \eta W_{2}(h^{+}(t), h^{+}(t^{k}))^{2}$$
$$+ \eta W_{2}(h^{-}(t), h^{-}(t^{k}))^{2} + \lambda^{k\dagger}(x^{k} - t) + \frac{\sigma}{2}(x^{k} - t)^{2}$$

- Only move t along the routed wires
- Keep topological structure of wires unchanged
- Unconstrained quadratic programming, solve by single step of gradient descent

How unified placement and routing works

Move cells along the routed wires



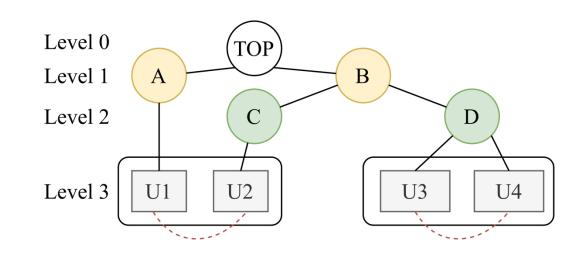
Examples of how unified placement and routing works

Modularity based Clustering

Hypergraph modularity quantifies the quality of clustering in hypergraphs

$$Q = \frac{1}{|E|} \left(EC - \sum_{d=2}^{D} E_d \sum_{A_i \in A} \frac{|\operatorname{Vol}(A_i)|}{|\operatorname{Vol}(V)|}^d \right),$$

- Merge nodes in logical hierarchy tree
- From leaf to root
- Merge nodes when modularity gain > 0

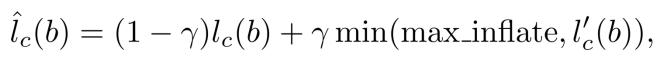


Convex Global Inflation & Local Inflation

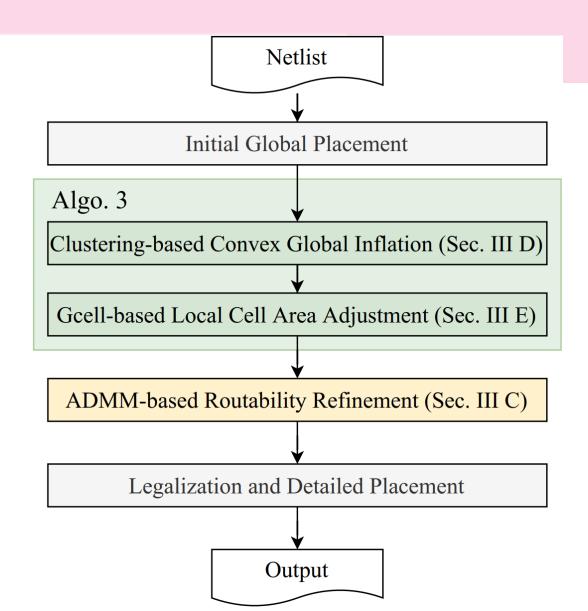
- Assuming uniform inflation across the cluster $\, \mathcal{F}: \, \min_{v} \, \sum_{g} \frac{WL_g}{v_g}, \,$
- cap(b):capacity at bin b

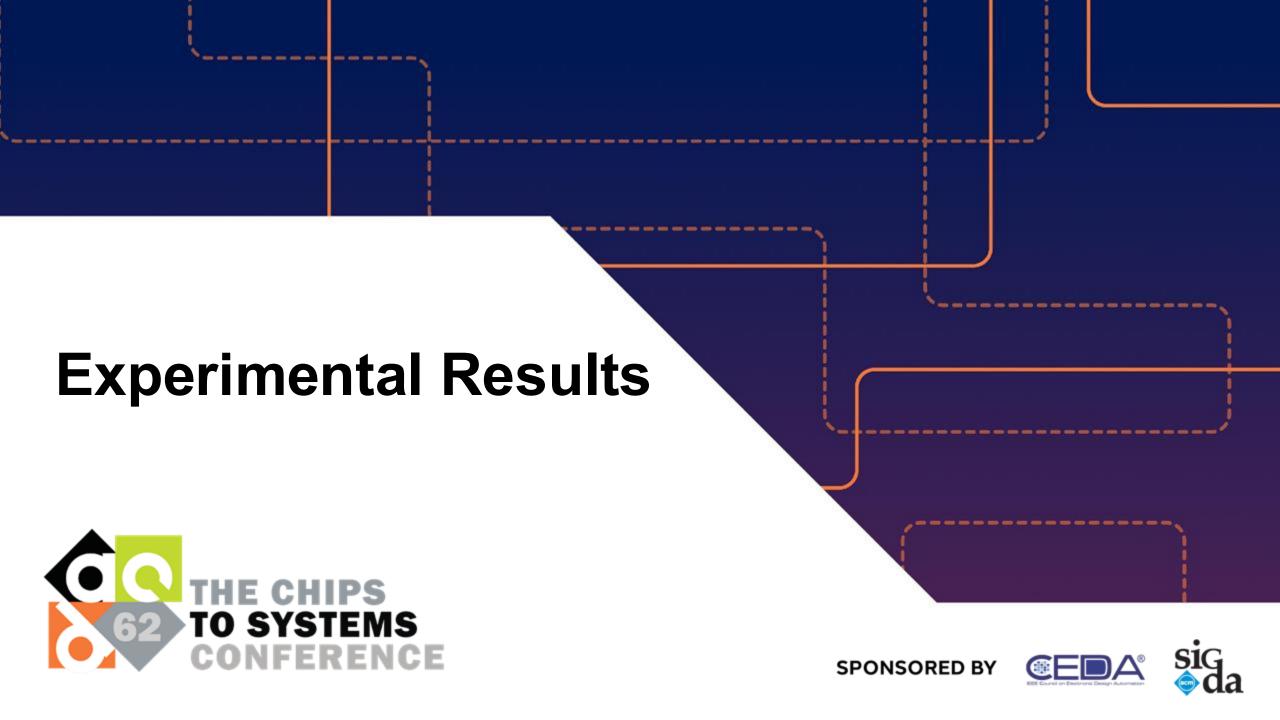
- s.t. $\sum_{g} D_g(b) \cdot v_g \le \operatorname{cap}(b),$
- WL_g , v_g , $D_g(b)$:wirelength, inflation rate, routing demand at bin b of cluster g
- Inflate nodes by local routing demand

$$l'_c(b) = \max(1, \frac{ldmd(b)}{cap(b) - gdmd(b)}),$$



Overall Flow





Experiment Setting

- Implementation
 - Based on DREAMPlace[Chen+, ICCAD2023] for placement
 - HeLEM-GR [Zhao+, ICCAD2024] for global routing (full GPU acceleration).
- Hardware:
 - Linux workstation, Intel Xeon Platinum 8358 CPU (32 cores) and NVIDIA A800 GPU (80GB memory).
- · Benchmarks:
 - Open-source designs from CircuitNet[Chai+, TACD2023] and Chipyard[Amid+, Micro2020], 14nm PDK
- Compared Tools:
 - OpenROAD[Ajayi+, DAC19] (CPU), Xplace 2.0[Liu+, TCAD2023] (GPU), DREAMPlace 4.1[Chen+, ICCAD2023] (GPU).
- Metrics:
 - Congestion (horizontal/vertical overflow %), routed wirelength (µm), runtime (minutes).
 Evaluated by Earlyglobalroute command in Innovus

Comparison with State-of-Art Placers

- Congestion much better
- Competitive wirelength
- Global router brings 1.32× runtime overhead

Design	OpenROAD				Xplace 2.0				DREAMPlace 4.1				RUPlace			
	rWL	C_H	C_V	RT	rWL	C_H	C_V	RT	rWL	C_H	C_V	RT	rWL	C_H	C_V	RT
OPENC910	1.34e7	7.17	4.18	20.4	1.47e7	7.27	2.68	2.8	1.22e7	10.56	5.47	1.6	1.56e7	2.02	0.72	4.3
NVDLA_S	4.98e6	0.90	0.26	4.1	4.67e6	1.01	0.37	0.7	4.43e6	1.54	0.49	0.8	4.95e6	0.09	0.09	1.8
NVDLA_L	3.92e7	3.67	0.55	28.0	3.80e7	3.78	0.69	4.3	3.58e7	4.78	1.36	3.3	4.43e7	1.36	0.23	7.1
VORTEX_S	2.63e6	2.42	0.94	5.8	1.64e6	0.85	0.34	0.5	1.59e6	1.22	0.59	0.3	1.71e6	0.28	0.16	0.8
VORTEX_L	1.17e7	0.17	0.08	12.6	1.12e7	0.24	0.14	1.6	1.10e7	0.60	0.29	2.2	1.09e7	0.13	0.10	4.9
GEMMINI	1.68e7	2.56	1.78	10.7	9.38e6	0.10	0.21	1.1	9.04e6	0.08	0.10	2.0	1.04e7	0.01	0.01	4.6
LARGEBOOM	1.20e7	0.06	0.02	10.5	1.00e7	0.97	0.51	1.4	9.78e6	1.55	0.93	1.7	1.17e7	0.31	0.11	4.0
Geo. Mean	1.07	4.74	3.47	3.67	0.93	4.11	3.88	0.45	0.88	5.91	5.80	0.43	1.00	1.00	1.00	1.00

Conclusion

- RUPlace presents an unified Formulation of placement and routing optimization
- ADMM-based algorithm with Wasserstein distance and bilevel optimization
- Convex optimization for cell inflation significantly enhances routability
- Proven performance improvements in congestion, wirelength, runtime

Future Works:

- Routing Acceleration
- Calibration using commercial tools



