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Abstract

Advanced technologies increasingly adopt mixed-cell-height circuits due
to their superior power efficiency, compact area usage, enhanced routabil-
ity, and improved performance. However, the complex constraints of
modern circuit design, including routing challenges and fence region
constraints, increase the difficulty of mixed-cell-height legalization. In
this paper, we introduce LEGALM, a state-of-the-art mixed-cell-height le-
galizer that can address routability and fence region constraints more effi-
ciently. We propose an augmented Lagrangian formulation coupled with
a block gradient descent method that offers a novel analytical perspec-
tive on the mixed-cell-height legalization problem. To further enhance
efficiency, we develop a series of GPU-accelerated kernels and a triple-
fold partitioning technique with minor quality overhead. Experimental
results on ICCAD-2017 and modified ISPD-2015 benchmarks show
that our approach significantly outperforms current state-of-the-art
legalization algorithms in both quality and efficiency.
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Figure 1: Illustrations for (a) edge spacing constraints and (b) pin-
short/access constraints.

1 Introduction

Legalization is a critical step in the modern VLSI physical design flow.
This process involves refining global placement results by eliminat-
ing design rule violations while minimizing disruption to the global
placement [1]. The quality of legalization significantly impacts the per-
formance of subsequent stages, such as detailed placement and rout-
ing. Meanwhile, as global placement achieves substantial performance
enhancements through GPU acceleration, legalization consequently
emerges as one of the most time-consuming phases in the entire place-
ment process [19]. Therefore, there is an urgent need for efficient and
high-quality legalization algorithms to expedite design closure and main-
tain the pace of technological advancement in chip design.

Legalization for mixed-cell-height circuits emerges as a critical chal-
lenge in advanced process node design [12]. Compared to their single-
row-height counterparts, multi-row-height cells provide enhanced drive
capability and improved pin accessibility. Thus, multi-row-height cells
are increasingly prevalent in cutting-edge technology nodes and play
a pivotal role in achieving superior performance metrics. This trend
underscores the growing importance of efficient mixed-cell-height legal-
ization algorithms. Mixed-cell-height legalization faces more challenges,
including more complex standard cell shapes and more intricate de-
sign rule constraints such as routability constraints and fence region
constraints [12]. These factors result in more discrete mathematical prob-
lems, potentially lowering the solution quality of legalization algorithms.

Recently, the mixed-cell-height standard cell legalization problem has
been studied extensively [4, 6-8, 10, 11, 13, 15-18, 22, 23, 26]. Existing
literature can be categorized into two types based on whether their
core algorithms allow cross-row movement: intra-row algorithms and
inter-row algorithms.
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Figure 2: The overflow for LEGALM algorithm. Dashed boxes indicate operations that may or may not be executed depending on whether

certain conditions are met (see Algo. 1).

The core algorithms of intra-row algorithms typically consist of two
parts: row assignments and intra-row legalization algorithms based on
the row assignment results. For row assignments, insertion point-based
algorithms [7, 11, 17, 23] transform the row assignment task into a search
for insertion points based on a greedy approach. They achieve better row
assignment results by calculating more accurate displacement curves
for the initial position and target location. For intra-row legalization
algorithms, Abacus-like algorithms [22] improve upon the single-row-
height legalization algorithm Abacus [21] and Tetris [14], addressing
their insufficiencies and extending their advantages to resolve mixed-
cell-height legalization. ILP-based algorithms [17] present an ILP model
to minimize total displacement given the row assignment and intra-row
order of cells, which is then transformed into a network flow problem
for solving. ICP-based algorithms [7, 8, 18, 26] formulate the intra-row
legalization problem under the row assignment and intra-row order of
cells as a quadratic program and reformulate it into a linear comple-
mentary problem (LCP). The problem is then efficiently solved using a
modulus-based matrix splitting iteration method (MMSIM), achieving
excellent solution quality. However, these methods lack exploration of
vertical movement and intra-row cell order, limiting the solution space.

The core algorithmic models of inter-row algorithms, on the other
hand, allow cells to move across different rows. Among them, [4, 10, 13,
16] model the legalization problem as a network flow problem to quickly
remove overlaps among the cells while minimizing cell displacement in
both horizontal and vertical directions. [6] transforms the legalization
problem into resource allocation tasks and proposes a negotiation-based
legalization algorithm. [15] models the legalization problem as a cell
spreading process and formulates it as an ILP problem. This method
achieves high-quality solutions but requires considerable time com-
pared with other legalization algorithms. Inter-row algorithms have
more flexibility in solving mixed-height standard cell legalization prob-
lems, potentially utilizing more computational resources or employing
heuristic methods to reduce unnecessary searches.

In this work, we propose LEGALM, a mixed-cell-height legalization
algorithm that addresses routability and fence region constraints more
efficiently. Our method provides a novel global perspective on the le-
galization problem from a mathematical programming standpoint. Our
legalization methodology can significantly improve result quality and
efficiency through better gradient information and GPU-friendly algo-
rithm kernels. The key contributions of our work are as follows:

e We propose a linearized augmented Lagrangian formulation that
incorporates augmented Lagrangian relaxation with a linearized
proximal gradient descent method, which can explore the vertical
and horizontal movement of cells more effectively.

e We introduce a block gradient descent method that can further
enhance the parallelism of cell updates without compromising
the convergence speed.

o To further enhance efficiency, we present a GPU-friendly triple-
fold partitioning parallelization strategy that enables our algo-
rithm to fully utilize the parallel computing power of GPUs with
minor quality overhead.

Experimental results on both ICCAD-2017 benchmarks [12] and mod-
ified ISPD-2015 benchmarks [11] demonstrate that our proposed al-
gorithm adeptly addresses the mixed-cell-height legalization problem
with high quality and stability. We achieve a 6 — 36% improvement in
overall quality score when compared to state-of-the-art legalizers on
ICCAD-2017 benchmarks. On larger-scale designs with millions of
cells, our proposed method shows even more significant acceleration
effects, achieving a 2.25 — 5.99x speedup compared to other state-of-the-
art methods and can complete legalization within six seconds on three of
the cases. Further ablation studies indicate that our proposed triplefold
partitioning technique incurs less than 0.5% quality score degradation
with up to 94.2X speedup.

2 Preliminaries

2.1 Placement Constraints

In physical design, the purpose of the legalization phase is to adjust the
positions of cells in the global placement results to ensure they meet
design rule constraints. These design rule constraints can be broadly
divided into hard constraints and soft constraints [12]. In this work, we
focus primarily on the multi-cell-height legalization problem and the
design rule constraints proposed in [12]. In addition to the two hard
constraints of site alignment constraints and overlap-free constraints, the
legalization results must also satisfy the following two hard constraints:

e Power and ground (P/G) tail alignment constraints (hard
constraint). Cells with even cell heights must be placed in alternate
rows with aligned P/G rails [11]. Cells of odd cell heights have no
restriction on the row assignments because they can be flipped
to align with the P/G rails [8].

e Fence region constraints (hard constraint). Cells assigned to
a fence region must be placed inside the fence boundarys; cells
not assigned to a fence region can be placed outside the fence
boundary [5].

Furthermore, we aim to minimize the number of violations of the fol-
lowing two routability constraints [24]:

o Edge spacing constraints (soft constraint). Due to limitations in
technology and performance requirements of the circuit, certain
cells must maintain a specific distance from each other. Specifi-
cally, we designate the types of the left and right sides of cells and
provide the minimum required spacing between different types
of cell edge types (see Fig. 1(a)).

e Pin short / access constraints (soft constraint). The signal pins
of cells should not be shorted or blocked by P/G grids or 10
pins [12]. Specifically, a signal pin on metal layer k is considered
short if it coincides with a P/G rail or an IO pin on the same metal
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layer k; it is deemed inaccessible if it overlaps with a P/G rail or
an IO pin on the adjacent metal layer k + 1 (see Fig. 1(b)).

2.2 Problem Formulation

Assume the set of cells is denoted by N. The coordinates are scaled
proportionally so that the site width is 1 and the row height is denoted as
H. The width and height of cell i are represented as w; and h; respectively,
where i € N. The current lower-left coordinates and the initial lower-
left coordinates are denoted as (x;,y;) and (x}, y}), respectively. We can
derive the formula for calculating displacement as follows:

8i = lxi = x|+ lyi — y;l. ¢y
The weighted average displacement metric Sq;, and maximum displace-
ment metric Mgy in [12] are quantified in terms of the number of single
row heights. Sg;, can weight cells of different heights when measur-
ing displacement, thereby considering the impact of cells with varying
heights. We denote Myqx = maxi{?—{i} as the maximum displacement
metric. Let K - H denote the maximum cell height (K € N), and Crg
represent the set of all cells with height kH. The weighted average
displacement metric S, is defined as follows:

1S 1 5
_ i
Sam—l_(z_.z E (2)
= H
The legalization problem can be formulated as follows:

Problem 1 (Mixed-Cell-Height Legalization Problem). Given a global
placement result, find a legalized outcome that adheres to the follow-
ing hard constraints: 1) site alignment constraints, 2) overlap-free con-
straints, 3) P/G tail alignment constraints, and 4) fence region constraints,
while minimizing the weighted average displacement metric Sqp,, the
maximum displacement metric My, qx, and the incidence of detailed rout-
ing constraints violations, including edge spacing constraints (denoted
as Ne) and pin access / short constraints (denoted as Np).

3 Algorithms
In this section, we further detail our proposed LEGALM algorithm.

3.1 Overview

Fig. 2 depicts the workflow of our proposed LEGALM algorithm, which
comprises three primary stages: 1) In the initial placement stage, we
disregard the overlap-free constraint, moving the cells into or out of the
fence area with minimal displacement. We refine the positions of the
cells to ensure they do not intersect with placement blockages and are
aligned with P/G terminals. Due to the omission of the overlap constraint,
this stage is highly efficient. 2) Subsequently, as shown in Stage Two
of Fig. 2, an Augmented Lagrangian Method (ALM)-based legalization
algorithm is employed to produce a legal and overlap-free solution. The
process illustrated in the figure is consistent with Algo. 1, which we
will discuss in detail in Sec. 3.2. The backbone of this stage is a Block
Gradient Descent (BGD) engine, which we will elaborate on in Sec. 3.4. 3)
Finally, in Stage Three for legalization refinement, we further optimize
the displacement without introducing any overflow. This is equivalent
to setting extreme parameters to invoke the BGD engine, which we will
explain in detail in Sec. 3.5.

3.2 Augmented Lagrangian Method for
Mixed-cell-size Legalization

In this section, we first provide the theoretical derivation of the ALM

method (Sec. 3.2.1 and Sec. 3.2.2). Then, we detail the iterative algorithm

framework in Stage two of Fig. 2 (Sec. 3.2.3). Finally, we introduce more

detailed parameter settings (Sec. 3.2.4).
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Algo. 1 Augmented Lagrangian Method for Mixed-Cell-Height Legal-
ization.

1: Input: initial solution x(®), maximum iteration T.
2: Output: legal solution x°%*.
3. Initialize o > Eq. (22)
4: Initialize (%) and hy > Eq. (24) and Eq. (25)
5: fork=0,1,....,T —1do
6: if k%KP4? = 0 then
7 Update the partition scheme R(.y and P(.) > Sec. 3.4.1
8: end if
o if k < KW or k = K*'"¢ then
10: xk+1)  Bep(x(K), A = 0) > Algo. 3
11: else
12: xk+1)  Bep(xK), A = A(K)) > Algo. 3
13: end if
14: of « CaLcoverrLow(x(k+D)
15: if of = 0 then
16: sout 4 (k+1)
17: break
18: end if
19: if k > K€ and k%K" = 0 then
20: Update hy > Eq. (26)
21: end if
22: Update Ak*1) from A (k) > Eq. (20)
23: end for

3.2.1 Displacement Cost Function. We employ a displacement cost func-
tion to measure the displacement cost of a cell moving to different sites.
Let S denote the site set, w; j represent the displacement cost when
the bottom-left corner of cell i is located at site j, and x; ; indicates
whether the bottom-left corner of cell i is at site j !. The displacement
cost consists of two terms:

. — am max max
wij =wii ta wii, (3)
where wl?‘;” = _||CIZI\ d;,j is the weighted average displacement cost of cell i
g i

when its bottom-left corner is at site j 2, and w8 = max{d; ;- sthre o}
is the maximum displacement cost of cell i when its bottom-left corner is
at site j 3,

3.2.2 The Augmented Lagrangian Formulation. We provide an analytical
view to formulate the legalization problem. For each cell i, we divide it
into a set of sub-cells with a width of one and a height of row height H,
denoted as set T; (|T;| = h; = w;/H).

Let x;; j represent whether the sub-cell ¢ (t € T;) of cell i is located
on site j (j € S). We can obtain the displacement cost w; s j for sub-cell
t of cell i to be on site j, which is the result of the correspondingly
displacement cost w; ; uniformly distributed across the sub-cells *.

xij € {0,1}, X jesxij =1, Vi€ N.

25,3]4 represents the displacement of cell i when its bottom-left corner is at site j. The

significance of this formula is to demonstrate that K- H - [N - Sam = Lien Zjes Wi Xij»

which means the total weighted average displacement cost of all cells is a constant multiple

of the weighted average displacement metric S, (see Eq. (2)).

3We empirically set @™4* = 1.5, "¢ = 3H.

4Suppose when Xi,z,j is 1, the position of the lower-left corner of the cell i is found to
W

. . ij’
be at site j'. We have w;;; = IU{I . Thus, we have };cn 2 jes Z,ev;i Wit jXitj =

2lieN Zjes WijXxij =K -H-|N|-Sam.
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Figure 3: The candidate positions when updating cell i include
a total of D = 245 red and blue points, with their horizontal and

vertical coordinate index offsets denoted as (A}C, A;./)(O <j<D).
The lower left corner of cell i is positioned at the red grid point.

Candidate positions include the red point and all blue points. The
algorithm moves the lower left corner of cell i to each candidate
position and computes the sum of the costs costl{ ‘;3.’1 (Eq- (38)) on
the covered sites. It selects the position with the minimum total
cost among all candidate positions as the new position for cell i.

Subject to the overlap-free constraints and fence region constraints,
we aim to minimize the total displacement cost as follows:

minz Z Z Wit jXit, ] 4

jeSieN teT;
St Xirj € {0, 1}, (5)
gj(x) = Z Z Xipj—1<0, Vje€S, (6)
ieN teT;
connected sub-cell constraints, 7)
fence region constraints, (8)

where g;(x) represents the overflow of site j under current solution
x. The connected sub-cell constraints require that for every cell i, the
relative solution variables x; .. can uniquely restore the original shape
of the cell.

To address the overlap-free constraints (6), we introduce a set of slack
variables r; for each site j € S:

minz Z Z Wit jXit, s 9

jeSieN teT;

s.t.xipj € {0,1}, (10)
gj(x)+rj=0, VjeS, (11)
rj 20, Vjes, (12)
connected sub-cell constraints, (13)
fence region constraints. (14)
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Algo. 2 GD: Gradient Descent for a single cell i.

1: Input: cell index i, cell position (x;,y;), assigned region R, ALM
multiplier A.

2: Output: new cell position (x[*¥, y**™).

3. Unplace cell i and update g(-) > Eq. (6)
4: parallel for j =0,1,---,D—1do

5: x},y}(—xi+A}‘,y,~+ei-H~Ay > Fig. 3
6: Cj CALcCosr(x},y;.,R,A) > Eq. (38)
7. end for

8 j' = argmin; C; > Parallel reduction

9 X[V, YV — X', Y,

10: Place cell i and update g(-) > Eq. (6)
11: Return (¥, y**")

We then relax the overlap-free constraints (6) and obtain the augmented
Lagrangian function [25]:

L(x,r,A) = Z Z Z Wit,jXit,j

JjESIeEN teT;

+Z).j [(gj(x)+rj)+%(gj(x)+rj)2] (15)
jeSs
+Ix (x),
where A is the Lagrange multiplier, and o is the penalty factor. I (x) is
the indicator function for the feasible solution space X, which equals 0
when x satisfies the connected sub-cell constraints and the fence region
constraints; otherwise it equals +co.

The augmented Lagrangian method gradually approaches the optimal
solution through iterative solving. In the k-th iteration of the augmented
Lagrangian method, given the multiplier A%) | we need to solve the
following optimization problem:

min £(x, r,AK)), (16)

It is observed that, given x, the optimal value of r can be solved through
the elimination method ° [3]:

rj :max(O,—i —-gj(x)). (17)

In other words, the optimal value of r can be expressed in terms of x, so
we can omit r from the optimization variables in the following formula
and define ¢/(x, A) as:

Y(x,A) = %;jt;l Wit jXit) +JZE;/1]- [(gj(x) +rj)+ % (95(x) + rj)z] . (19)
Within each augmented Lagrangian iteration, we need to solve the
following optimization problem:

xk+D) = argminL(x,A(k)) = argmin tp(x,l(k)) + I (x). (19)
X x

After the iteration, we update the multiplier A by using the KKT condi-
tions [3]:

k k o
)LJ(, *1) = max (/1]( ) +he- [(gj(x) +rj)+ 7 (95 (x) +rj)2] ,O), (20)
where hy is the weighting factor.

3.23 Summary of ALM-based Legalization. Algo. 1°® summarizes the
iterative algorithm framework derived from the above theoretical deriva-
tion, which is consistent with Stage Two in Fig. 2. We will detail the
parameter settings later in Sec. 3.2.4. The underlying philosophy of
this framework is similar to that of the analytical global placement in
[9, 19, 20], where the primary focus during the early iterations is to

SDue to space limitations, we omit the derivation process here.
“We empirically set KP4 = 50, Kely = 2, Kthre = 300, and K = 100.
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optimize the displacement cost. As the iterations progress, we gradually
enforce the overlap-free constraints until an overlap-free solution is
achieved.

Firstly, we initialize the parameters of the optimization problem (line 3-
4). Then, we proceed to the iterative solution process. In each iteration,
we first determine whether there is a need to update the partition scheme
(which will be detailed in Sec. 3.4.1). Subsequently, a Block Gradient
Descent (BGD) engine (Algo. 3) is employed to solve the sub-problem
Eq. (19).

It should be noted that during the first K€Y iterations (line 9-10),
we set A to zero, which is equivalent to disregarding the overflow and
focusing solely on optimizing the displacement cost. This approach is
beneficial for fully optimizing the displacement in the early stages of
the iterative process. Additionally, a similar operation is performed at
the K7€ th iteration, which is akin to restarting the optimizer during
the optimization process, aiding in escaping from local optima. If an
overlap-free solution is obtained, we terminate the iterations and return
a legal solution (line 14-18). After the K*"¢-th iteration, we begin to
incrementally update the weighting factor h¢ to gradually strengthen
the overlap-free constraints (line 20). Meanwhile, we update A after each
iteration (line 22).

3.24 Parameter Initialization and Updating. The intuition for initializ-
ing o is to evaluate the current congestion level. The higher the con-
gestion, the larger o needs to be increased to eliminate congestion. Let
di(x) represent the sum of demands of all sites covered by cell i,

di(x)= D" Y (1+9;(x)xir,. (21)
teT; jeS
The larger the average d;(x) of cells, the higher the current congestion
level. We use this value to initialize o’:

ien di(x(©
. i N|N|(x ) (22)

The approach for initializing A is to balance the ratio between the dis-
placement cost and the augmented Lagrangian function term. Based
on this, following the definition of the augmented Lagrangian function
term, we define ad;(x) to represent the augmented demand term of cell
i:

o = max{1,a®

adi(x) = [l+ 1+¢g;i(x +g 1+gi(x z]xi,t’-. 23
(x) tzmzs (149,(0)) + 5 (1+g;(x)? | xizj. (23)
We assume that the final cell displacement distance is on the order of
row height H, and initialize A through the average ratio of the expected
displacement to the augmented demand term. The initialization of A is
as follows &:

20 LT 2ieN H/adi(x(o)).

J INI

In the later stages of iteration, we also need to gradually increase the
weighting factor hf to progressively strengthen the penalty for violating
the overflow constraint and gradually eliminate overflow (line 4 and 20)
as follows ’:

(24)

h](co) iy (25)
hj(pkﬂ) o h}k) Y (26)

In the following two sections, Sec. 3.3 first introduces how to derive
the update of a single cell from the perspective of linearized proximal
gradient method and summarizes it into the function GD (see Algo. 2).
Then, Sec. 3.4 explains how to schedule multiple cells’ GD function using

7a% is set to 3.

A

8a’ is set to 1.5.

“We empirically set 'f =02
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Algo. 3 BGD: Block Gradient Descent for a series of cell partition set
{Pl}f‘z_ol and the corresponding sub-partition set {Rl}{‘:_ol.

1: Input: current solution x, ALM multiplier A, cell partition set
{PI}IL;Ol’ sub-partition set {Rl}lL:’Ol,

2: Output: new solution x"¢".

3. parallel for/=0,1,---,L —1do

4: Sort cells in P; by d;(x) in descending order. > Eq. (21)
5 fori e Py do

6: (xi,yi) <« retrieve the lower left corner of cell i from x

7: (xl.”ew, y?ew) «— GD(i,x;,yi, Rj, A) > Algo. 2
8: Update xl"ew from (x€W, yIe™)

9: end for

10: end for

. return x"¢V

—_
—_

the block gradient descent method and summarizes it into the engine
BGD (see Algo. 3).

3.3 Linearized Proximal Gradient Method

In this section, we detail how to solve the sub-problem Eq. (19). Firstly,
Sec. 3.3.1 presents the theoretical derivation of the linearized proximal
gradient method, and then Sec. 3.3.2 introduces the routability con-
straints penalty. Finally, Sec. 3.3.3 summarizes and provides the pseu-
docode for the algorithm implementation.

3.3.1 Theoretical Derivation. Given A, denote f(x) as {(x,A) in Eq.
(18). We aim at solving the following optimization problem:

mxinf(x) + I (x). (27)

Note that f(-) is differentiable and the proximal mapping operator of X is
easy to obtain, we adopt the proximal linear method [2] as a linearization
technique to resolve Eq. (27). The proximal mapping operator of X is
defined as follows:

Py (v) = arg min ||lu - o||3, (28)
ueX

where Py (v) is a set. We then solve for x through an iterative ap-
proach [2]. The update formula for the k-th iteration is:

x(k+1) ¢ py. (x<’<> —7v f(x<k>)) , (29)

where 7 is the step size. To solve Eq. (28) and Eq. (29), we first simplify
the proximal mapping operator Eq. (28) and obtain

Py(v) = argruneiE [|u— u||% (30)
. 2 T 2
= - +
argr'PElg(l lull3 = 20" u+ [|o||5 (31)

= arg mein 1Tu—20"Tu, asu; € {0,1} whenu € y  (32)
ucy

= argmin(1 — 20)Tu (33)
ucy

= argmin cTu (denote1- 20 asc) (34)
ucy

We can observe that due to the characteristics of the solution space
X, the proximal mapping operator essentially performs a linearization
operation. In other words, given v, Py (v) finds the u that minimizes the
inner product with ¢ =1 — 20.

Then we simplify Eq. (29). The derivative of f(-) is'%:

Vi, J () = Wi j+A;Tj, (35)

10We omit the derivation process here.
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where T; = max{1 + og;(x), 0}. Substituting Eq. (35) into Eq. (29) and
Eq. (34), we can obtain
Cigj =1—2xizj+2r(wipj+A;Tj). (36)

According to the definition of the proximal gradient method, we are
(k+1)

(k+1)

looking for a new feasible solution x near the current solution x (<)

1 is minimized. In practice, we

, such that the inner product ¢’ x
set 7 sufficiently large, so we can disregard the term 1 - 2x;; ; in Eq. (36)
and focus on the relative magnitudes of w; j + A;Tj when comparing
different candidate positions. Therefore, we can define the cost function

as
costitj = Wi, j +AjTj. (37)

3.3.2  Routability Constraints Penalty. To further consider routability
constraints, we incorporate a penalty term for violations of routability
constraints into the cost function Eq. (37). Let R;; ; denote the total
number of violations of edge spacing constraints, pin short, and pin
access constraints when subcell ¢ of cell i (with ¢ € T;) is located at site j,
while keeping the solutions of other cells unchanged. The cost function

considering routability constraints is as follows 2:
costi{‘;’c}’ = costiy,j +plech g Ritj. (38)

At this point, costi{i’cj}l precisely represents the cost given by the linearized
proximal gradient method when subcell t of cell i is located at site j.

3.3.3  Summary of Linearized Proximal Gradient Method. Algo. 2 sum-
marizes gradient descent step for each cell'3. We first unplace cell i,
and decrease the overflow function of the covered sites by 1 (line 3).
Then we enumerate the nearby candidate positions (line 4-7) parallelly,
where ¢; is 2 if and only if the height of cell i is an even multiple of H;
otherwise it is 114, For each enumerated position (x;., y;.), if it is not legal,
i.e., not within the solution space X or not entirely within the region R,
the value of C; is +oo; otherwise calculate the sum of the costs of the
covered sites according to Eq. (38) as C;. Soft constraints violations are
only considered within the assigned region R. Subsequently, we obtain
the candidate position with the minimum moving cost (line 8) and the
new position of cell i (line 9). Finally, we place cell i and increase the
overflow function of the newly covered sites by 1 (line 10). Note that
our enumeration includes the initial position, which is guaranteed to be
legal (see Fig. 3), so it is certain that we can move to a legal solution.

3.4 Block Gradient Descent Method

Algo. 2 provides the updating method for each cell, and we need to
schedule the updates of all cells while ensuring the algorithm converges
within a reasonable time. 1) One extreme is to update each cell by Algo. 2
sequentially, which is actually equivalent to the block gradient descent
method with the smallest granularity block, i.e., each block consists of
only one cell. The advantage of this method is that fewer ALM iterations
are required, but within each iteration, the updates of cells are not
independent of each other, which is not conducive to parallel computing
acceleration. 2) On the other extreme, updating all cells based on the
result of the last ALM iteration x (k) simultaneously has the advantage
that the updates of cells within the ALM iteration are independent and
thus can be processed in parallel, but the disadvantage is that the number
of ALM iterations is higher.

1We empirically define the surrounding position for each cell as shown in Fig. 3.

12We empirically set p* ech — 1, Incorporating highly discrete routability constraints penalty
can disrupt the algorithm’s global view, but due to their relatively small quantity, they actually
have little impact on the algorithm’s performance.

13We will detail the assigned region R in Sec. 3.4.

4The purpose of this is to ensure that cell i still satisfies the P/G alignment constraint before
and after moving.
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Figure 4: This diagram shows a simplified illustration of triplefold
partitioning. As depicted in Fig. 4(a), the entire layout is divided
into L = 3 x 3 grids (solid black lines). Fig. 4(a)-Fig. 4(c) represent
triplefold partitioning schemes, where each subfigure contains L
colors representing L sub-regions {Rl}»{“:_o1 (note that sub-regions
may not be connected). The yellow sub-region has its bottom-left
corner at the trisection point of the diagonal of the bottom-left
grid in Fig. 4(b)-Fig. 4(c).

3.4.1 Triplefold Partitioning (TP) Algorithm. To fully combine the ad-
vantages of these two methods, we propose a triplefold partitioning
algorithm method that allows for parallel processing while minimiz-
ing the mutual influence between position updates within blocks as
illustrated in Fig. 415 and Algo. 3.

Assume the layout size is S,, X Sy, we divide the entire layout into
| Sy /x| % LSh/yhi"tJ grids of approximately equal size '°. Based
on this grid division, we then construct three schemes for creating sub-
regions {Rl}{“:_ol. Take Fig. 4(a) as an example, we divide the entire layout

into L non-overlapping sub-regions {Rl}{‘:_ol and construct correspond-

ing cell subsets {Pl}{‘z’ol. Cell i belongs to P; if and only if the current
position of cell i is entirely within sub-region R;. Cells that are in mul-
tiple sub-regions are not considered in the current partition scheme.
Sub-regions and their corresponding cell subsets are processed in paral-
lel (line 3-10). Within each sub-region R, the cells in P; are sorted by
their demand d; (x) (Eq. (21)) in descending order (line 4), and updated
sequentially (line 5-9).

During each iteration of our augmented Lagrangian algorithm (line
7 in Algo. 1), Ry and its corresponding P(.y rotate among these three
partition schemes to ensure that all cells have the opportunity to be
updated. It can be demonstrated that with at least three partition schemes,
a cell will be entirely contained within a certain sub-region in at least
one of the partition schemes, allowing it to move freely as the partition
schemes rotate.

3.4.2 GPU-Accelerated Kernels. To fully harness the power of massive
parallelization on GPUs, we implement the core algorithm BGD as a
GPU-optimized engine. We configure the GPU kernel with L blocks,
each containing D threads. This structure aligns perfectly with our
algorithmic design.

Each GPU block i is assigned the task of updating the sub-partition
set R; and its corresponding cell partition P; (as shown in line 7 of
Algo. 3). This block-level parallelism allows for simultaneous processing
of different sub-regions of the layout.

Within each block, we leverage thread-level parallelism. Each thread j
is responsible for calculating the cost at a distinct candidate position (line
4-7 in Algo. 2). The computed cost values (line 6 in Algo. 2) are stored in
a shared memory array, facilitating fast inter-thread communication. To
determine the optimal position, we employ a parallel reduction algorithm

15The 3 x 3 grid division shown here is for simplification and illustrative purposes only. In
practice, the grid division will adapt to the layout’s shape.
16(yhint yh"‘[) serve as hints for the grid size, set to (250, 25H) in our implementation.
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(line 8 in Algo. 2) to efficiently find the minimum cost value across all
threads.

This two-tiered parallelization strategy—at both the block and thread
levels—enables us to efficiently process large layouts and significantly
accelerate the legalization process.

3.5 LG Refinement

Following the ALM-based legalization process, we obtain an overlap-
free solution. To further enhance this result, we employ a refinement
phase utilizing the same BGD engine, but with a crucial modification: we
set A = +co. This adjustment, effectively invoking BGD(x, A = +0), is
tantamount to imposing an infinite penalty on overflow when evaluating
candidate positions. Consequently, this approach rigorously preserves
the overlap-free property of the solution while allowing for positional
optimizations.

The refinement procedure iteratively applies the three partitioning
schemes. Through empirical analysis, we observed that the marginal
improvements in solution quality begin to diminish after approximately
10 iterations for each partition scheme. Therefore, we adopt this number
of iterations as the optimal trade-off between refinement quality and
computational efficiency.

4 Experimental Results

We implement LEGALM with C++/CUDA for GPU and C++/OpenMP
for multi-threaded CPU, respectively. We adopt PyTorch for agile
GPU memory management and NVIDIA CUB for parallel sorting and
reduction on GPU. We conduct experiments on a CentOS 7.9 server
with two Intel Xeon Platinum 8358 CPUs (2.60GHz, 28 cores) and one
NVIDIA A800 GPU. The benchmarks are from the ICCAD-2017 mixed-
cell-height legalization contest [12] with routability and fence region
constraints, and the modified ISPD-2015 benchmarks where 10% of
the single row cells are modified to double-row cells as stated in [11].

4.0.1 Comparison with State-of-the-Art Placers on ICCAD-201 7 Bench-
marks. Table 1'7 summarizes the statistics of TCCAD-2017 bench-
marks as well as the comparison with the state-of-the-art placers. We
compare our proposed algorithms on both CPU (LEGALM-CPU) and
GPU (LEGALM-GPU) with state-of-the-art methods [6, 17, 26]. We do
not compare with [23] because it does not consider the routability con-
straints. To fairly compare the overall performance of different algo-
rithms, we adopt the quality score S from [17] as follows:

Ny + N, M,
S = 1+Shpwl+ Ld e)(1+ max)sam (39)

IN| 100

where Sp.y1 is the increase ratio of HPWL, and the definition of other
symbols are stated in Sec. 2.2. Note that all runtime data except those
marked with T are the results run on our server. [6] is executed on our
server with four threads as the same setting in its open-source release.
We can see that LEGALM-GPU achieves the best quality score among
all compared algorithms, i.e., 36% better than [17], 25% better than [26],
and 6% better than [6] with 3.83% speed-up on average.

To compare the performance with [6] under the same number of
CPU cores, we implement a CPU parallel version LEGALM-CPU with
four threads. In this version, we change the way the grid is divided
in Sec. 3.4.1 to divide it into 2 X 2 grids, so that each CPU thread is
responsible for one sub-region. The experimental results show that
under the same number of CPU threads, LEGALM-CPU and [6] have
similar runtime, and the quality score is 36%, 25%, and 6% better than
[17], [26], and [6], respectively. Meanwhile, compared to LEGALM-CPU,

7The runtime data in this table exclude the file 1/O time, GPU data transfer time, and GPU
memory allocation time, as in practice, all the data are already in memory when running the
entire backend flow.
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Figure 5: (a() %‘he relative quality score change AS and normalized
runtime of LEGALM-GPU and the three baselines on des_perf -
b_md2. (b) The runtime breakdown of LEGALM-GPU on mgc_-—
superbluel2.

LEGALM-GPU achieves a 3.98% speedup with minor quality degradation.
We attribute these benefits to the linearized proximal gradient method,
which provides a global view that can effectively reduce overflow with
minor displacement overhead.

Table 2 further shows the breakdown of quality scores of LEGALM—
GPU and other legalizers. We can see that LEGALM~-GPU consistently
achieves better average displacement S,,, than other placers on all cases
with 33.2%, 25.0%, and 4.4% better than [17], [26], and [6], respectively.
The HPWL variation Spy,; of LEGALM-GPU is 29%, 34%, and 13% better
than that in [17], [26], and [6], respectively. LEGALM—-GPU also achieves
10% better maximum displacement M4y than [6, 17, 26]. Although the
number of our soft constraint violations Np, is higher than that of other
legalizers, our other metrics are significantly lower than those of the
legalizers, thereby resulting in a better overall quality. This indicates that
our analytical constraint optimization problem modeling can effectively
optimize the objective under overlap-free constraints.

4.0.2 Comparison with State-of-the-Art Placers on Large-scale Bench-
marks. To demonstrate the scalability of our approach, we further con-
duct experiments on five superblue series large designs from modi-
fied ISPD-2015 benchmarks. Table 3 summarizes the statistics of the
five benchmarks as well as the comparison with three state-of-the-art
placers [6, 8, 11]. The experimental results show that for million-scale
designs, LEGALM-GPU demonstrates more significant acceleration ef-
fects and better scalability compared to the CPU version LEGALM-CPU.
Meanwhile, LEGALM~-GPU achieves 2.25X to 5.99X speedup compared
to other methods [6, 8, 11], and can complete legalization within ten
seconds for three cases. This indicates that LEGALM-GPU has good
scalability for large-scale designs.

4.0.3 Ablation Study for Triplefold Partitioning Algorithm. To demon-
strate the effectiveness of our proposed triplefold partitioning algo-
rithm, we construct three baselines for ablation study on GPU, namely
LEGALM-2H, LEGALM-4H, and LEGALM-NP. LEGALM—-2H indicates
the use of a doubled grid size hint, i.e., (2xchint thi"[) (see Sec. 3.4.1) to
construct the grid mesh. LEGALM-4H follows the same logic. The larger
the grid size hint, the greater the range within which cells in the sub-
region can move, but the lower the degree of parallelism. LEGALM-NP
signifies the non-use of the triplefold partitioning algorithm.

Fig. 5(a) presents the relative quality score change AS and normalized
runtime of LEGALM-GPU and the three baselines on des_perf_b_-
md2, the case with the most fence regions. We can observe that compared
to LEGALM-NP, LEGALM~-GPU only incurs less than 0.5% quality score
degradation, yet it achieves 94.2x speedup. Additionally, LEGALM-GPU,
LEGALM-2H, and LEGALM-4H all achieve an acceleration ratio close
to the ideal. This indicates that the TP algorithm can significantly speed
up legalization with minor quality degradation.

4.0.4 Runtime Breakdown. Fig. 5(b) shows the runtime breakdown of
LEGALM-GPU on the largest case mgc_superbluel2. We can see
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Table 1: Benchmark statistics, quality scores, and runtime comparison on ICCAD-2017 benchmarks [12].

‘ #Cells of Different Heights (H) ‘ i ‘ Runtime (s) Score S ‘

Case I 2 3 4] Den. (%) | #Regions | 0717 [26]7 [6] LEGALM-CPU LEGALM-GPU | [17] [26] [6] LEGALM-CPU LEGALM-GPU |
des_perf_1 112644 0 0 0 90.6 0 791 1593 2771 29.41 751 110 091 092 0.66 0.66
des_perf_a_mdl 103589 4699 0 0 55.1 4 670 454 2923 23.29 8.38 187 16 128 118 1.20
des_perf_a_md2 105030 1086 1086 1086 55.9 4 647 603 44.66 29.18 16.64 212 19 117 111 112
des_perf_b_mdl 106782 5862 0 0 55.0 12 595  3.65 1191 15.27 20.34 082 078 0.66 0.64 0.65
des_perf_b_md2 101908 6781 2260 1695 64.7 12 621 311 1415 16.45 111 091 08 071 0.70 0.70
edit_dist_1_mdl | 118005 7994 2664 1998 67.4 0 634 406 2001 33.93 2.68 0.81 083 0.67 0.65 0.63
edit_dist_a_md2 | 115066 7799 2599 1949 59.4 1 778 442 1676 22.61 222 0.82 075 0.68 0.67 0.67
edit_dist_a_md3 | 119616 2599 2599 2599 57.2 1 1039 1692 47.52 41.40 19.21 114 105 0.88 0.79 0.79
£ft_2_md2 28930 2117 705 529 82.7 0 182 128  5.66 5.56 1.74 111 101 0.82 0.75 0.68
fft_a_md2 27431 2018 672 504 32.3 0 160 081 331 3.09 051 0.86 077 074 0.74 0.75
£ft_a_md3 28609 672 672 672 31.2 0 186 082 267 3.03 039 0.68 0.61 0.59 0.59 0.59
pci_bridge32_a_mdl | 26680 1792 597 448 495 4 176 113 215 248 0.70 1.09 098 0.93 0.91 0.92
pci_bridge32_a_md2 | 25239 2090 1194 994 57.7 4 150 335 10.81 545 212 110 111 091 0.85 0.85
pci_bridge32_b_mdl | 26134 1756 585 439 26.6 3 172 101 347 5.02 0.88 134 128 116 113 1.14
pci_bridge32_b_md2 | 28038 292 292 292 183 3 426 090 384 436 1.69 131 127 101 1.00 1.01
pci_bridge32_b_md3 | 27452 292 585 585 22.2 3 215 141 578 6.44 1.92 161 158 1.09 1.07 1.09
Ratio B B - s - - 145 103 383 3.98 1.00 136 125 1.06 1.00 1.00

¥ The runtime data is quoted from the publications for reference.

Table 2: Detailed breakdown of quality scores on ICCAD-2017 benchmarks [12].

Case \ Shpwi (%) \ Mmax \ Sam Ny Ne |

| 171 [26] [6] LEGALM-GPU | [17] [26] [6] LEGALM-GPU | [17] [26] [6] LEGALM-GPU | [17] [26] [6] LEGALM-GPU | [17] [26] [6] LEGALM-GPU |
des_perf_1 1080 9.16 8.28 5.40 84 66 105 43 0.903 0.781 0.758 0.582 1815 1279 1353 3027 0 0 0 0
des_perf_a_mdl 3.64 318 291 2.59 60.7 60.7 60.7 60.7 1122 0.966 0.772 0.725 90 52 174 668 0 0 0 0
des_perf_a_md2 371 371 3.04 2.66 48.1 404 404 404 1.380 1.308 0.804 0.775 188 58 279 785 0 0 0 0
des_perf_b_mdl 251 251 228 2.19 100 9.0 106 11.6 0725 0.696 0578 0.571 168 122 178 510 0 0 0 0
des_perf_b_md2 288 241 199 1.88 233 191 19.1 18.9 0.718  0.652 0.585 0.577 26 0 180 783 0 0 0 0
edit_dist_1_mdl 210 235 186 1.59 57 70 48 4.7 0752 0.761 0.610 0.587 45 0 516 1927 0 0 3171 0
edit_dist_a_md2 148 148 118 115 164 164 164 16.4 0.697 0.634 0573 0.568 42 0o 179 712 0 0 0 0
edit_dist_a_md3 225 282 153 133 314 233 298 235 0.837 0.831 0.662 0.626 1342 130 1012 1782 0 0 0 0
£ft_2_md2 1458 16.83 9.72 7.67 71 68 49 38 0.905 0.818 0.642 0.586 196 0 344 1124 0 0 3307 0
fft_a_md2 150 150 1.50 1.39 343 343 343 34.3 0.631 0.567 0.544 0.539 4 0 8 569 0 0 0 0
fft_a_md3 1.04 209 173 1.56 11.3 110 115 11.6 0.605 0.537 0518 0.512 2 0 13 586 0 0 0 0
pci_bridge32_a_mdl | 557 337 375 3.55 459 42.6 42.6 42.6 0712 0.662 0.624 0.619 25 0 64 145 0 0 0 0
pci_bridge32_a_md2 | 6.08  6.08 5.00 4.05 181 181 182 18.4 0.872  0.879 0.726 0.680 183 161 277 494 0 0 0 0
pci_bridge32_b_mdl | 2.86 437 3.00 2.81 514 514 520 514 0.853 0.818 0.740 0.730 3 0 39 216 0 0 0 0
pci_bridge32_b_md2 | 254 254 3.44 330 617 54.6 54.6 54.6 0.785 0.794 0.630 0.630 5 0 26 138 0 0 0 0
pci_bridge32_b_md3 | 442 442 401 3.89 498 498 520 51.4 1031 1.009 0.686 0.686 38 9 52 186 0 0 0 0
Ratio [ 129 134 113 1.00 [11 11 11 1.0 [1332 1.250 1.044 1.000 [ - - - - [ - - - -

Table 3: Benchmark statistics, displacement and runtime comparison on modified ISPD2015 benchmarks [11].

‘ #Cells of Different Heights (H) ‘ ‘ Total Disp. (sites) ‘ Runtime (s) ‘

Case 1 2 | Den. (%) | 11 [8] [6] LEAGLM-CPU LEAGLM-GPU | [11] [8] [6]] LEAGLM-CPU LEAGLM-GPU |
mgc_superbluell_a | 861314 64302 43 1786342 1550976 1438304 1390481 1424208 2116 2891 99.43 500.33 53.46
mgc_superbluel? | 1172586 114362 45 2015678 1726472 1615657 1533497 1562654 98.78 4511 110.25 100.93 22.19
mgc_superblueld | 564769 47474 56 1599810 1359615 1159759 1112588 1142576 15.18 2173  70.55 74.05 5.53
mgc_superbluel6_a | 625419 47474 48 1173106 1037827 946922 928873 955012 1912 257 37.34 34.86 5.01
mgc_superblueld | 478109 27988 52 806529 694879 644336 640308 639796 9.68 17.83 27.39 17.45 3.12

Ratio s B B 12853 11106  1.0114 0.9809 1.0000 225 263 599 7.40 1.00

¥ The runtime data is quoted from the publications for reference.

that the ALM-based legalization takes around 39% of the overall run-
time. The initial legalization takes 3% of the runtime running on CPU
only. CPU-GPU data transfer and file I/O take around 7% and 25% of
the runtime, respectively. In practice, we can initialize all data in the
GPU global memory before running the entire placement flow, thus this
overhead is not mandatory.

5 Conclusion

In this work, we introduce LEGALM, an innovative mixed-cell-height
legalization algorithm with routability and fence region constraints.
We propose an augmented Lagrangian formulation coupled with a lin-
earized proximal gradient descent method that offers a novel analyti-
cal perspective on cell position updates. We propose a block gradient
descent method that enhances parallelism while maintaining the con-
vergence speed of the augmented Lagrangian method. We present a
triplefold partitioning technique that maximizes the utilization of GPU
parallel computing power. Extensive experiments conducted on ICCAD~
2017 benchmarks and modified ISPD-2015 benchmarks demonstrate

LEGALM’s superior performance compared to existing state-of-the-art
legalizers in terms of both solution quality and runtime efficiency. We
achieve a 6 — 36% improvement in overall quality score when compared
to state-of-the-art legalizers on ICCAD-2017 benchmarks. On larger-
scale designs with millions of cells, our proposed method shows even
more significant acceleration effects, achieving a 2.25 — 5.99x speedup
compared to other state-of-the-art methods. Our ablation studies further
validate the efficacy of the triplefold partitioning technique, revealing up
to 94.2x speedup with less than 0.5% quality score degradation. Future
work includes exploring advanced parallelization strategies and inte-
grating machine learning techniques to dynamically adjust partitioning
schemes based on specific layout characteristics.
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