# International Symposium on Physical Design ธ์เดิล



# **LEGALM:** Efficient Legalization for Mixed-Cell-Height Circuits with Linearized Augmented Lagrangian Method

**Jing Mai**<sup>1</sup>, Chuanyuan Zhao<sup>1</sup>, Zuodong Zhang<sup>1</sup>, Zhixiong Di<sup>2</sup>, Yibo Lin<sup>1</sup>, Runsheng Wang<sup>1</sup>, Ru Huang<sup>1</sup>

<sup>1</sup>Peking University

<sup>2</sup>Southeast Jiaotong University





## Outline



1. Introduction

- 2. The LEGALM Algorithm
- 3. Experimental Results
- 4. Conclusion

# Introduction

# Mixed-Cell-Height Circuits & Fence Regions



- □ Recent mixed-cell-height designs combine higher and smaller cells to optimize PPA in modern ASICs.
- ▶ Higher cells enhance performance and routability for critical paths.
- ▶ Smaller cells improve area efficiency and reduce power for non-critical logic.
- Modern ASIC CAD tools provide the fence region as an important feature.



Fence Region



# Challenges & Motivation



#### ☐ Why Legalization matters:

- ► Eliminates design rule violations post-global placement.
- ▶ Impacts downstream routing and performance.

# VSS Pin VDD Pin VDD $c_1$ $c_2$ $c_3$ $c_4$ $c_5$ $c_6$ $c_7$ $c_8$ $c_8$ $c_9$ $c_$

#### ☐ Challenges in Mixed-Cell-Height:

- ▶ Site alignment, overlap-free.
- ► Cross-row shapes, P/G alignment, fence regions, edge spacing, pin access.



## **Related Work**



#### ☐ Intra-row Methods:

- ▶ Row assignment + row-bases optimization algorithm (e.g., ILP [Li+,DAC'18], LCP [Chen+, DAC'17]).
- ▶ Limited vertical movement space during optimization.



#### **□** Inter-row Methods:

- Network flow / ILP-based (e.g., [Darav+, ISPD'17])
- ▶ High flexibility but computationally expensive.



## Contribution



**LEGALM**, an efficient inter-row legalization method for <u>mixed-cell-height</u> circuits with <u>fence region</u> constraints using the linearized augmented Lagrangian method.

- 1. Augmented Lagrangian Method (ALM) for efficient vertical and horizontal cell movements.
- 2. Block Gradient Descent (BGD) for parallel cell updates.
- **3. Triple-fold partitioning** for GPU efficiency.

Results: 6-36% better quality, 2.25-5.99 × speedup on million-cell designs.

# The LEGALM Algorithm

### Framework





#### □ 3-Stage Workflow:

- 1. Initial Legalization: Minimal displacement, ignore overlaps.
- 2. ALM-based Legalization: Optimize displacement + eliminate overlaps.
- **3. Refinement**: Strict no-overlap optimization.

#### **□** Key Components:

- Linearized ALM formulation for constraint relaxation.
- BGD for parallel cell updates.
- GPU-friendly partitioning.

# Legalization Formulation



$$\min \sum_{j \in S} \sum_{i \in N} \sum_{t \in \mathcal{T}_i} w_{i,t,j} x_{i,t,j},$$

$$s.t. \ x_{i,t,j} \in \{0,1\},$$

$$g_j(\mathbf{x}) = \sum_{i \in N} \sum_{t \in \mathcal{T}_i} x_{i,t,j} - 1 \le 0, \quad \forall j \in S,$$

$$connected \ sub-cell \ constraints,$$

fence region constraints,



- Partition cell *i* into sub-cells of width 1 and height *H* (row height).
- □  $x_{i,t,j}$  Binary indicator if sub-cell t ( $t \in T_i$ ) of cell i is placed at site j ( $j \in S$ ).
- □  $w_{i,t,j}$  Displacement cost for placing sub-cell t ( $t \in \mathcal{T}_i$ ) at site j ( $j \in S$ ).
- $g_j(x)$  Overflow at site  $j (j \in S)$ .
- Objective: Minimize displacement while satisfying constraints.

# **Augmented Lagrangian Formulation**



- **Lagrangian relaxation** to handle overlap-free constraints.
- $\Box$  Slack variables  $r_i$  for site overflow.

$$\mathcal{L}(\mathbf{x}, \mathbf{r}, \boldsymbol{\lambda}) = \sum_{j \in S} \sum_{i \in N} \sum_{t \in \mathcal{T}_i} w_{i,t,j} x_{i,t,j}$$

$$+ \sum_{j \in S} \lambda_j \left[ \left( g_j(\mathbf{x}) + r_j \right) + \frac{\sigma}{2} \left( g_j(\mathbf{x}) + r_j \right)^2 \right]$$

$$+ I_{\mathcal{X}}(\mathbf{x}),$$

- Solve for optimal  $r_j$  by **elimination method**:  $r_j = \max(0, -\frac{1}{\sigma} g_j(x))$ .
- ☐ Iterative multiplier updates based on **KKT conditions**.

Sub-problem: 
$$\mathbf{x}^{(k+1)} = \underset{\mathbf{x}}{\operatorname{argmin}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^{(k)}) = \underset{\mathbf{x}}{\operatorname{argmin}} \psi(\mathbf{x}, \boldsymbol{\lambda}^{(k)}) + I_{\mathcal{X}}(\mathbf{x}).$$
 
$$\lambda_{j}^{(k+1)} = \max \left(\lambda_{j}^{(k)} + h_{f} \cdot \left[ \left(g_{j}(\mathbf{x}) + r_{j}\right) + \frac{\sigma}{2} \left(g_{j}(\mathbf{x}) + r_{j}\right)^{2} \right], 0 \right),$$

# **Augmented Lagrangian Formulation**



- Lagrangian relaxation to handle overlap-free constraints.
- $\square$  Slack variables  $r_i$  for site overflow.

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{r},\boldsymbol{\lambda}) = \sum_{j \in S} \sum_{i \in N} \sum_{t \in \mathcal{T}_i} w_{i,t,j} x_{i,t,j}$$

$$+ \sum_{j \in S} \lambda_j \left[ \left( g_j(\boldsymbol{x}) + r_j \right) + \frac{\sigma}{2} \left( g_j(\boldsymbol{x}) + r_j \right)^2 \right]$$
Variable Coupling
$$+ I_{\mathcal{X}}(\boldsymbol{x}), \qquad (x_1 + x_2 + \dots + x_n)(x_1 + x_2 + \dots + x_n)$$

- Solve for optimal  $r_j$  by **elimination method**:  $r_j = \max(0, -\frac{1}{\sigma} g_j(x))$ .
- ☐ Iterative multiplier updates based on **KKT conditions**.

Sub-problem: 
$$\mathbf{x}^{(k+1)} = \operatorname*{argmin}_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^{(k)}) = \operatorname*{argmin}_{\mathbf{x}} \psi(\mathbf{x}, \boldsymbol{\lambda}^{(k)}) + I_{\mathcal{X}}(\mathbf{x}).$$
 
$$\lambda_{j}^{(k+1)} = \max \left(\lambda_{j}^{(k)} + h_{f} \cdot \left[ \left(g_{j}(\mathbf{x}) + r_{j}\right) + \frac{\sigma}{2} \left(g_{j}(\mathbf{x}) + r_{j}\right)^{2} \right], 0 \right),$$

## **Linearized Proximal Gradient Method**



Sub-problem: 
$$\mathbf{x}^{(k+1)} = \underset{\mathbf{x}}{\operatorname{argmin}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^{(k)}) = \underset{\mathbf{x}}{\operatorname{argmin}} \psi(\mathbf{x}, \boldsymbol{\lambda}^{(k)}) + I_{\chi}(\mathbf{x}).$$

• Given fixed mutipler  $\lambda$ , let  $f(x) = \psi(x, \lambda)$ , solve the following function

$$\min_{\mathbf{x}} f(\mathbf{x}) + I_{\mathcal{X}}(\mathbf{x}).$$

Proximal Mapping Operator (can be proved a linear operator).

$$P_{\mathcal{X}}(\boldsymbol{v}) = \arg\min_{\boldsymbol{u} \in \mathcal{X}} \|\boldsymbol{u} - \boldsymbol{v}\|_{2}^{2},$$

Proximal Gradient Method (diamond search)

$$\mathbf{x}^{(k+1)} \in P_{\mathcal{X}}\left(\mathbf{x}^{(k)} - \tau \nabla f(\mathbf{x}^{(k)})\right),$$



Figure: Diamond search range for the cell located at the red site.

# Linearized Proximal Gradient Method (cont'd)



#### **☐** Final Cost Function:



#### □ Steps:

- Enumerate candidate positions (diamond search).
- Compute costs for displacement, overflow and technology.
- Select minimum-cost positions.



Figure: Diamond search range for the cell located at the red site.

## **Block Gradient Descent**



### Update single cell → Update distant cells in parallel

#### □ Triple-fold Partitioning:

- Divide layout into non-overlapping sub-regions (totally 3 partition schemes).
- Rotate partitions schemes to avoid update conflicts.

### ☐ GPU Acceleration:

- Kernel design: 1 grid per sub region, threads for candidate selections.
- Shared memory for cost reduction.

| $R_6$          | $R_7$ | R <sub>8</sub> |
|----------------|-------|----------------|
| R <sub>3</sub> | $R_4$ | $R_5$          |
| $\nearrow R_0$ | $R_1$ | $R_2$          |

| $R_4$  | $R_5$ |
|--------|-------|
| <br>R₁ | $R_2$ |
| $R_7$  | $R_8$ |
|        | $R_1$ |



| Grid           |                |                |                |  |
|----------------|----------------|----------------|----------------|--|
| Thread Block   | Thread Block   | Thread Block   | Thread Block   |  |
| <b>       </b> | <b>!</b>       | <b>!</b>       | <b>!</b>       |  |
| Thread Block   | Thread Block   | Thread Block   | Thread Block   |  |
| <b>!</b>       | <b>!!!!!!!</b> | <b>!!!!!!!</b> | <b>!!!!!!!</b> |  |

# **Experimental Results**

# **Experiment Setup**



#### ■ Benchmarks:

- ICCAD-2017 (routability / fence regions). [Darav+, ICCAD'17]
- Modified ISPD-2015 (million-cell designs). [Chow+, DAC'16]

#### **■** Metrics:

- Quality score S: Combine HPWL variation  $S_{hpwl}$ , weighted averaged displacement  $S_{am}$ , maximum displacement  $M_{max}$ , #pin short/access DRVs  $N_p$ , and #edge spacing DRVs  $N_e$ .
- Runtime and speedup.

#### □ Platform:

- One NVIDIA A800 GPU.
- Two Intel Xeon Platinum 8358 CPUs (2.60GHz, 32 cores) with 1024GB RAM.

Table: Statistics of ICCAD-2017 Benchmarks.

|                    | #Cells of Different Heights (H) |      |      | D (01) |          |          |
|--------------------|---------------------------------|------|------|--------|----------|----------|
| Case               | 1                               | 2    | 3    | 4      | Den. (%) | #Regions |
| des_perf_1         | 112644                          | 0    | 0    | 0      | 90.6     | 0        |
| des_perf_a_md1     | 103589                          | 4699 | 0    | 0      | 55.1     | 4        |
| des_perf_a_md2     | 105030                          | 1086 | 1086 | 1086   | 55.9     | 4        |
| des_perf_b_md1     | 106782                          | 5862 | 0    | 0      | 55.0     | 12       |
| des_perf_b_md2     | 101908                          | 6781 | 2260 | 1695   | 64.7     | 12       |
| edit_dist_1_md1    | 118005                          | 7994 | 2664 | 1998   | 67.4     | 0        |
| edit_dist_a_md2    | 115066                          | 7799 | 2599 | 1949   | 59.4     | 1        |
| edit_dist_a_md3    | 119616                          | 2599 | 2599 | 2599   | 57.2     | 1        |
| fft_2_md2          | 28930                           | 2117 | 705  | 529    | 82.7     | 0        |
| fft_a_md2          | 27431                           | 2018 | 672  | 504    | 32.3     | 0        |
| fft_a_md3          | 28609                           | 672  | 672  | 672    | 31.2     | 0        |
| pci_bridge32_a_md1 | 26680                           | 1792 | 597  | 448    | 49.5     | 4        |
| pci_bridge32_a_md2 | 25239                           | 2090 | 1194 | 994    | 57.7     | 4        |
| pci_bridge32_b_md1 | 26134                           | 1756 | 585  | 439    | 26.6     | 3        |
| pci_bridge32_b_md2 | 28038                           | 292  | 292  | 292    | 18.3     | 3        |
| pci_bridge32_b_md3 | 27452                           | 292  | 585  | 585    | 22.2     | 3        |

Table: Statistics of ISPD-2015 Benchmarks.

| 0                 | #Cells of Different Heights (H) |        | D (%)    |
|-------------------|---------------------------------|--------|----------|
| Case              | 1                               | 2      | Den. (%) |
| mgc_superblue11_a | 861314                          | 64302  | 43       |
| mgc_superblue12   | 1172586                         | 114362 | 45       |
| mgc_superblue14   | 564769                          | 47474  | 56       |
| mgc_superblue16_a | 625419                          | 47474  | 48       |
| mgc_superblue19   | 478109                          | 27988  | 52       |

### Result on ICCAD-2017



Quality: LEGALM improve overall score S by 6-36% vs. SOTA with  $1.03-3.83 \times$  speedup.



# Result on ICCAD-2017 (cont'd)



Quality: LEGALM improve overall score S by 6-36% vs. SOTA with 1.03- $3.83 \times$  speedup.

#### ■ Breakdown:

• 13-34% better HPWL variation  $S_{hpwl}$ .

- 4.4-33.2% better weighted average displacement  $S_{am}$ .
- 10% better maximum displacement  $M_{max}$ .



# Scalability on Large Designs



- ☐ Cases: mgc\_superblue (1M+cells)
- □ Results:
  - $2.25-5.99 \times$  faster than SOTA.
  - 1.1-28.5% better displacement than SOTA.
  - Legalization in < 10 seconds for 3/5 cases.
- Why?: GPU parallelism + efficient partitioning.





# Ablation Study & Runtime Breakdown



#### □ Triple-fold Partitioning (TP) Impact:

- 94.2× speedup vs. no partitioning (LEGALM-NP).
- <0.5% quality loss.</li>
- □ **Grid Size:** Larger sub-regions reduce parallelism but improve movement.



#### **□** Runtime Breakdown:

- ALM-based Legalization: 39%.
- Initial Legalization: 3%
- Legalization Refinement: 5%.



# Conclusion & Future Work

## **Conclusion & Future Work**



**LEGALM**, an efficient inter-row legalization method with the linearized augmented Lagrangian method that supports

- mixed-cell-height circuits
- fence regions

#### □ Conclusion:

- Linearized ALM formulation for mixed-cell-height legalization.
- Block Gradient Descent (BGD) + Triple-fold partitioning for GPU acceleration.
- 6–36% better quality,  $2.25-5.99 \times \text{speedup}$ .

#### **□** Future Work:

Advanced parallelization strategies.

# THANK YOU!

jingmai@pku.edu.cn

Personal Website





