
A Robust FPGA Router with 
Concurrent Intra-CLB Rerouting

Jiarui Wang1, Jing Mai1, Zhixiong Di2, Yibo Lin1

1Peking University
2Southwest Jiaotong University

jiaruiwang@pku.edu.cn



Modern FPGA Layout2

´ Contain heterogeneous resources, Like function unit (FU), IO, DSP, BRAM,…

FU

IO

DSP

BRAM

FPGA Layout

Configurable Logic Blocks (CLB) 



Modern FPGA Layout3

´ Contain heterogeneous resources, Like function unit (FU), IO, DSP, BRAM,…

FU

IO

DSP

BRAM

FPGA Layout

LUT

LUT

LUT

LUT

FF

FF

FF

FF

FU

Basic Logic Element (BLE)



FPGA Routing Problem4

´ Target:
– Find logic paths between logic elements inside CLBs

´ Importance:
– Performance impact

- Wirelength/Timing/Power/…

– Runtime consuming
- 41%~86% runtime in FPGA CAD flow [Murray et. al. TRTS’15]

– Scalability
- Millions of logic cells and nets



Related Works5

´ Open-source academic routers
– VTR 8.0 [Murray et. al. ASPDAC ’20]

– CRoute [Vercruyce et. al. FCCM ’19]

´ Routing metric enhancement
– Rip-up & reroute enhancement [Wang et. al. TCAD ’18]

– GPU acceleration [Shen et. al. ICCD ’18]

– Improved routing cost function [Zha et. al. FPGA ’22]



Limitation of Prior Works6

´ Can only deal with logic-equivalence FPGA architecture
– Each logic pin of a logic element is logic equivalent

– Can be connected to any input/output pin of CLB



Non Logic-Equivalence FPGA Architecture7

´ Each logic pin of a logic element can be connected to different I/O logic pin

´ Challenge
– Large search space

– Limited routing resources

– Intra-CLB routing congestion



Problem Formulation8

´ Input
– Non logic-equivalence FPGA routing architecture

– Placed FPGA design

´ Output
– Routed logic path for each logic net

´ Target
– Minimize wirelength

– Ensure no routing congestion



Our Contribution9

´ A robust FPGA router can deal with non logic-equivalence FPGA architecture
– 2-stage robust router to generate logic element level routing result

– ILP-based concurrent tile assignment to deal with logic tiles difficult to route

– Stencil-based parallelization to accelerate tile assignment 

´ Result in less runtime and wirelength than SOTA
– 100% routability

– 8.87x faster

– 16.25% less wirelength



Algorithm Framework10

´ 2-Stage router to generate routing result
– Global routing to assign inter-CLB topology

Placed
Netlist

FPGA
Arch.

Inter-CLB Global Routing



Algorithm Framework11

´ 2-Stage router to generate routing result
– Global routing to assign inter-CLB topology

– Detailed routing to generate routing result

Placed
Netlist

FPGA
Arch.

Inter-CLB Global Routing

Logic Element Level
Detailed Routing

Routed
Netlist



Algorithm Framework12

´ 2-Stage router to generate routing result
– Global routing to assign inter-CLB topology

– Detailed routing to generate routing result

Inter-CLB Global Routing

Rip-up Congested Sinks 

A* Pathfinding Search

Any Cong.?

GR
Result

Y

N



Algorithm Framework13

´ 2-Stage router to generate routing result
– Global routing to assign inter-CLB topology

– Detailed routing to generate routing result

´ Concurrent tile assignment 
– Resolve congestions inside CLBs difficult to route

Logic Element Level
Detailed Routing

Rip-up Congested Sinks 

A* Pathfinding Search

Assign Tile？

Concurrent Tile Assignment

Any Cong.?

Routed
Netlist

Y

N

N

Y



Global Routing14

´ Target: Generate inter-CLB level coarsen routing result
– Main idea: Pathfinder [L. McMurchie et. al. FPGA ’95]

GSB

LSB

GSB

LSB

LSB

GSB
GSB

LSB

FU FU

FU FU

LUT

LUT



Global Routing15

´ Target: Generate inter-CLB level coarsen routing result
– Main idea: Pathfinder [L. McMurchie et. al. FPGA’95]

´ Regard logic blocks as a grid graph



Detailed Routing16

´ Decide logic element level routing path for each net following guide of global routing

GSB

LSB

GSB

LSB

LSB

GSB
GSB

LSB

FU

FU FU

FU

LUT

LUT



Detailed Routing17

´ Decide logic element level routing path for each net following guide of global routing

´ Regard each logic pin as a vertex in the RRG

Routing Resource GraphCLB Layout



Detailed Routing18

´ Decide logic element level routing path for each net following guide of global routing

´ Regard each logic pin as a vertex in the RRG

´ Pin merging and swapping to improve routability
Capacity = 3

Routing Resource Graph
Before Pin Merging

Routing Resource Graph
After Pin Merging

CLB Layout



Detailed Routing – Routing Enhancement19

´ Decide logic element level routing path for each net following guide of global routing

´ Regard each logic pin as a vertex in the RRG

´ Pin merging and swapping to improve routability

´ Other enhancement technique to reduce runtime and improve quality



Detailed Routing – Routing Enhancement20

´ Decide logic element level routing path for each net following guide of global routing

´ Regard each logic pin as a vertex in the RRG

´ Pin merging and swapping to improve routability

´ Other enhancement technique to reduce runtime and improve quality
– Rip-up & reroute enhancement

Overflow Vertex

Before rip-up & reroute After rip-up & reroute



Detailed Routing – Routing Enhancement21

´ Decide logic element level routing path for each net following guide of global routing

´ Regard each logic pin as a vertex in the RRG

´ Pin merging and swapping to improve routability

´ Other enhancement technique to reduce runtime and improve quality
– Rip-up & reroute enhancement

– Large net enhancement

TS

Current Routing Results

Initial searching region for target T



Detailed Routing – Routing Enhancement22

´ Decide logic element level routing path for each net following guide of global routing

´ Regard each logic pin as a vertex in the RRG

´ Pin merging and swapping to improve routability

´ Other enhancement technique to reduce runtime and improve quality
– Rip-up & reroute enhancement

– Large net enhancement

– Dynamic routing region expansion

Congested tile

Before region expansion After region expansion

Routing region



Detailed Routing – Routing Enhancement23

´ Decide logic element level routing path for each net following guide of global routing

´ Regard each logic pin as a vertex in the RRG

´ Pin merging and swapping to improve routability

´ Other enhancement technique to reduce runtime and improve quality
– Rip-up & reroute enhancement

– Large net enhancement

– Dynamic routing region expansion

– Historical-based cost function calculation

𝑐(𝑢, 𝑣) = (1 + 𝑝 ∗ 𝑜𝑣𝑒𝑟𝑢𝑠𝑒(𝑣)) ∗ (𝑏(𝑣) + ℎ(𝑣)) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑢, 𝑣)

Cost of edge from 𝑢 to 𝑣 Basic cost Historical cost Edge weight



Concurrent Tile Assignment24

´ Most congestion can be resolved in first few iterations
– Congestion remains in few logic tiles

´ Use ILP to concurrently generate routing result for those tiles
– Consider a tile and its neighbor tile to improve quality



Target of ILP25

´ Route multiple nets inside a tile and its neighbor tile concurrently
– No overflow vertices

– No loop in the paths



Target of ILP26

´ Route multiple nets inside a tile and its neighbor tile concurrently
– No overflow vertices

– No loop in the paths

A

B

A

A

B

RRG Vertex Net Source Vertex Net Sink Vertex

Unused Edges Used Edges

Legal Solution

Net A

Net B



Target of ILP27

´ Route multiple nets inside a tile and its neighbor tile concurrently
– No overflow vertices

– No loop in the paths

A

B

A

A

B

RRG Vertex Net Source Vertex Net Sink Vertex

Unused Edges Used Edges

Legal Solution

A

B

A

A

B

Overflow Vertex

Vertex Overflow

Net A

Net B



Target of ILP28

´ Route multiple nets inside a tile and its neighbor tile concurrently
– No overflow vertices

– No loop in the paths

A

B

A
A

A

B

RRG Vertex Net Source Vertex Net Sink Vertex

Unused Edges Used Edges

Legal Solution

A

B

A

A

B

A

A

A

A

A

A
Path Not ConnectedVertex Overflow



Target of ILP29

´ Route multiple nets inside a tile and its neighbor tile concurrently
– No overflow vertices

– No loop in the paths

A

B

A

A

B

RRG Vertex Net Source Vertex Net Sink Vertex

Unused Edges Used Edges

Legal Solution

A

B

A

A

B

A

A

A

A

A

A
Path Not Connected

A A

Loop in the PathVertex Overflow



ILP Variables & Objective30

´ Variables of ILP:

𝑅!,# whether edge 𝑒 is used to route net 𝑗
𝑆!,#,$ whether edge 𝑒 is used to route sink 𝑘 of net 𝑗

A

𝐴%

𝐴&

𝑒%

𝑒&

𝑒'

𝑒(

𝑒)

𝑒*

𝑅!!,+ = 𝑅!",+ = 𝑅!#,+ = 1
𝑆!!,+,+! = 𝑆!",+,+! = 1
𝑆!!,+,+$ = 𝑆!#,+,+$ = 1

Other binary variables are 0



ILP Variables & Objective31

´ Variables of ILP:

´ ILP Objective
– Minimize ∑!,#𝑅!,# ⋅ 𝐶𝑂𝑆𝑇(𝑒)

𝑅!,# whether edge 𝑒 is used to route net 𝑗
𝑆!,#,$ whether edge 𝑒 is used to route sink 𝑘 of net 𝑗

Cost of RRG edge 𝑒



ILP Formulation of Tile Assignment32

´ ILP constraints
– ∑!,#𝑅!,# ≤ 𝑐𝑎𝑝 𝑣 , 𝑒 ∈ 𝐹𝐼(𝑣) Ensure no overflow vertex

A

B

A

A

B

Overflow Vertex
Net A

Net B



ILP Formulation of Tile Assignment33

´ ILP constraints
– ∑!,#𝑅!,# ≤ 𝑐𝑎𝑝 𝑣 , 𝑒 ∈ 𝐹𝐼(𝑣)

– 𝑆!,#,$ ≤ 𝑅!,#, 𝑘 ∈ 𝑆𝐼𝑁𝐾(𝑗) Ensure each sink of each net is routed 

A
A

A
A

A

A



ILP Formulation of Tile Assignment34

´ ILP constraints
– ∑!,#𝑅!,# ≤ 𝑐𝑎𝑝 𝑣 , 𝑒 ∈ 𝐹𝐼(𝑣)

– 𝑆!,#,$ ≤ 𝑅!,#, 𝑘 ∈ 𝑆𝐼𝑁𝐾(𝑗)
– ∑!,#,$ 𝑆!,#,$ = 1, 𝑒 ∈ 𝐹𝑂 𝑣 , 𝑣 = 𝑆𝑂𝑈𝑅𝐶𝐸 𝑗 , ∀𝑘 ∈ 𝑆𝐼𝑁𝐾(𝑗)

Ensure signal is sent from source pin of each net

A

A



ILP Formulation of Tile Assignment35

´ ILP constraints
– ∑!,#𝑅!,# ≤ 𝑐𝑎𝑝 𝑣 , 𝑒 ∈ 𝐹𝐼(𝑣)

– 𝑆!,#,$ ≤ 𝑅!,#, 𝑘 ∈ 𝑆𝐼𝑁𝐾(𝑗)
– ∑!,#,$ 𝑆!,#,$ = 1, 𝑒 ∈ 𝐹𝑂 𝑣 , 𝑣 = 𝑆𝑂𝑈𝑅𝐶𝐸 𝑗 , ∀𝑘 ∈ 𝑆𝐼𝑁𝐾(𝑗)

– ∑!,#,$ 𝑆!,#,$ = 1, 𝑒 ∈ 𝐹𝐼 𝑣 , 𝑣 = 𝑆𝐼𝑁𝐾(𝑗, 𝑘)

Ensure signal is received at each sink pin of each net

A

A



ILP Formulation of Tile Assignment36

´ ILP constraints
– ∑!,#𝑅!,# ≤ 𝑐𝑎𝑝 𝑣 , 𝑒 ∈ 𝐹𝐼(𝑣)

– 𝑆!,#,$ ≤ 𝑅!,#, 𝑘 ∈ 𝑆𝐼𝑁𝐾(𝑗)
– ∑!,#,$ 𝑆!,#,$ = 1, 𝑒 ∈ 𝐹𝑂 𝑣 , 𝑣 = 𝑆𝑂𝑈𝑅𝐶𝐸 𝑗 , ∀𝑘 ∈ 𝑆𝐼𝑁𝐾(𝑗)

– ∑!,#,$ 𝑆!,#,$ = 1, 𝑒 ∈ 𝐹𝐼 𝑣 , 𝑣 = 𝑆𝐼𝑁𝐾(𝑗, 𝑘)

– ∑!!" 𝑆!!",#,$ = ∑!#$% 𝑆!#$%,#,$ , 𝑒%& ∈ 𝐹𝐼 𝑣 , 𝑒'() ∈ 𝐹𝑂 𝑣 , 𝑣 ≠ 𝑆𝑂𝑈𝑅𝐶𝐸 𝑗 , 𝑣 ∉ 𝑆𝐼𝑁𝐾(𝑗)

Ensure there is a path from source pin to each sink pin and 
ensure no loop in the routing result A

A

A A



Stencil-Based Parallelization37

´ Solving ILP during tile assignment takes large amount of time
– Trying to solve ILP parallelly



Stencil-Based Parallelization38

´ Solving ILP during tile assignment takes large amount of time
– Trying to solve ILP parallelly

´ Consider data dependency between different logic tiles



Stencil-Based Parallelization39

´ Solving ILP during tile assignment takes large amount of time
– Trying to solve ILP parallelly

´ Consider data dependency between different logic tiles

Conflicted Tiles Not Conflicted



Stencil-Based Parallelization40

´ Solving ILP during tile assignment takes large amount of time
– Trying to solve ILP parallelly

´ Consider data dependency between different logic tiles

´ Stencil-based data dependency graph



Experimental Setup41

´ FPGA design: ISPD ’16 contest benchmark excluding control set signals

´ Industrial FPGA routing architecture
– Anonymous due to confidential issues

´ Place result from ISPD ’16 contest winner

´ Adapted VTR router [Murray et. al. ASPDAC ’20] as baseline
Design #Cells (K) #Nets(K) Design #Cells (K) #Nets (K)

FPGA01 105 105 FPGA07 707 716

FPGA02 166 167 FPGA08 717 725

FPGA03 421 428 FPGA09 867 876

FPGA04 423 420 FPGA10 952 961

FPGA05 425 433 FPGA11 845 851

FPGA06 704 713 FPGA12 1103 1111



Experimental Results42

´ Our router successfully routes all the designs

´ Adapted VTR fails in 4 of 12 designs

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

1.1

FPGA01 FPGA02 FPGA03 FPGA04 FPGA05 FPGA06 FPGA07 FPGA08 FPGA09 FPGA10 FPGA11 FPGA12

Routed Rate

Adapted VTR Ours



Experimental Results43

´ Wirelength of our router is 16.25% less than adapted VTR on average

0.8

0.9

1.0

1.1

1.2

1.3

1.4

FPGA01 FPGA02 FPGA03 FPGA04 FPGA05 FPGA06 FPGA07 FPGA08 FPGA09 FPGA10 FPGA11 FPGA12

Norm. Routed Wirelength

Adapted VTR Ours



Experimental Results44

´ Speed of our router is 8.87x faster than adapted VTR on average

0

2

4

6

8

10

12

14

16

FPGA01 FPGA02 FPGA03 FPGA04 FPGA05 FPGA06 FPGA07 FPGA08 FPGA09 FPGA10 FPGA11 FPGA12

Norm. Runtime

Adapted VTR Ours



Experimental Results45

´ By applying tile assignment at the 20th rip-up & reroute iteration, our router gain 4 
iterations less on FPGA08.

Runtime breakdown on FPGA08



Conclusion46

´ Robust FPGA router for FPGA architecture with non logic-equivalence logic pins
– 2-stage global & detailed routing

– Effective concurrent tile assignment with stencil based parallelization

´ 8.87x faster and 16.25% less wirelength with 100% routability compare to SOTA

Future work:
• Parallelization during detailed routing
• Support timing-driven routing



Thanks!
Questions are welcome


