

# MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy 

Yifan Chen, Jing Mai, Xiaohan Gao, Muhan Zhang, Yibo Lin

Peking University, Beijing, China<br>chenyifan2019@pku.edu.cn

## 2. Introduction: Placement \& Routing Flow

- Macro position: high impact
- Entire flow: time consuming


High demand !

## ${ }^{3}$ Introduction: Challenges

- Only know the position of macros
- How to combine geometry and interconnection information



Position


Netlist

■ Macros ■ Cells

## 4. Introduction: Related Works

|  | Model | Geometry Info | Interconnection Info | Pin Info | Loss |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Huang et al. | CNN | Image | $\times$ | $\checkmark$ | MSLE |
| Mirhoseini et al. | GNN | Coordinate | $\checkmark$ | $\times$ | MSE |
| Ours | GNN | Relative Coordinate | $\checkmark$ | $\checkmark$ | Ranking Loss |

## 5. Introduction: Contribution

- MacroRank framework: rank macro placement solutions by routing quality
- EHNN: translation equivariant, extract both netlist and macro location information
- Learning to Rank (LTR): learn the relative order of macro placement solutions
- Better performance than the SOTA model
- Improve the Kendall rank correlation coefficient by 49.5\%.
- Improve the average performance of top-30 prediction by $8.1 \%, 2.3 \%$, and $10.6 \%$ on wirelength, vias, and shorts, respectively
- Input: Macro Position, Netlist
- Output: Score
- Target: Order-preserving

- Global Routing Metrics:
- ICCAD2019 Contest
- WL, \#Vias, \#Shorts
- Prediction Accuracy Metrics:
- Mean Relative Error

$$
M R E=\left|\frac{y_{\text {pred }}-y_{\text {label }}}{y_{\text {label }}}\right|
$$

- Kendall's correlation coefficient

$$
T=\frac{n_{\text {concordant }}-n_{\text {discordant }}}{\frac{1}{2} n(n-1)}
$$

## 7 Preliminary: Equivariance

- Rigid body transformation

(a) Origin

(b) Translation

(c) Rotation
- Will not affect the optimal solutions of placement and routing
- E(2)-equivariance
- But in practice, only suboptimal solutions can be found



## Preliminary: Learning to Rank (LTR)

- Pairwise LTR: Given a pair of samples, predict which is better
- Need a scoring function $f$, takes sample $X$ as input and outputs a score $s$
- If $s_{i}>s_{j}$, then $X_{i}$ is better than $X_{j}$

Too many black boxes !


Regression

Easier
What we want

MacroRank: Architecture

- EHNN


MacroRank: Clustering

- EHNN

- Cell Clustering
- Netlist too large
- Few macros
- hMETIS


MacroRank: HGCL

- EHNN


MacroRank: HGCL

- Modeling netlist as a tripartite graph.
- Two stage message passing:
- Instance to pin (Concatenation), pin to net (GAT)
- Net to pin (Linear), pin to instance (MEAN)


MacroRank: EGCL

- EHNN

- From netlist to macro only graph
- Remove all clusters
- Connect to K nearest neighbors.



## MacroRank: EGCL

- EHNN

- EGCL
- Translation Equivariant
- Position encoding layer



## MacroRank: EGCL

- Translation equivariant neighborhood message passing
- Directly pass $x_{i}$, no equivariance.
- Pass $\mathrm{d}\left(x_{i}-x_{j}\right)$, depends on encoding function $d(\cdot)$.


No equivariance


Depends on $d(\cdot)$.

- For example,


Translation Equivariance

$E(2)$-Equivariance

- Position encoding

$$
m_{i j}=\Phi\left(\mathrm{h}_{i}, \mathrm{~h}_{j}, P E_{n}\left(\overrightarrow{x_{i}}-\overrightarrow{x_{j}}\right)\right)
$$

where


Sensitive to small position changes.

## MacroRank: Pairwise Rank Loss

- Predicted probability of $x_{i}>x_{j}$ :

$$
P\left(x_{i}>x_{j}\right)=\operatorname{Sigmoid}\left(s_{i}-s_{j}\right)
$$

- Weighted binary cross-entropy loss:

$$
L_{i j}=\log \left\{1+\exp \left(s_{j}-s_{i}\right)\right\}\left|\Delta Z_{i j}\right|
$$

- Final loss function:

$$
\text { Loss }=\sum_{\text {design pair }(i, j)} L_{i j}
$$

## MacroRank: Pairwise Rank Loss

- Weighting coefficient $\Delta Z_{i j}$ : focus on the samples with higher rank

$$
\Delta Z_{i j}=\operatorname{Softmax}\left(y_{i}^{\text {label }}\right)-\operatorname{Softmax}\left(y_{j}^{\text {abel }}\right)=\frac{\exp y_{i}}{\sum_{p} \exp y_{p}}-\frac{\exp y_{j}}{\sum_{p} \exp y_{p}}
$$



- Higher rank, greater weight
- Larger difference, greater weight

Label

## Experiment: Dataset

- Dataset:
- 12 designs in ISPD 2015 benchmark, free all macros.
- Placed by DREAMPlace, perturb the result in macro legalization stage.
- Global Routing: CU. GR
- Divided to 2 groups, one for training, one for testing, cross validation.

| Group | Design <br> Name | \#Macros | Macro <br> Coverage | \#Instances | \#Nets | \#Macro <br> Placements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | des perf a | 4 | $50 \%$ | 108666 | 110281 | 300 |
|  | fft a | 6 | $65 \%$ | 33641 | 32088 | 300 |
|  | matrix mult a | 10 | $67 \%$ | 154460 | 154284 | 296 |
|  | matrix mult c | 10 | $67 \%$ | 151247 | 151612 | 296 |
|  | superblue14 | 336 | $48 \%$ | 633661 | 619697 | 299 |
|  | superblue19 | 280 | $60 \%$ | 521805 | 511606 | 298 |
| 2 | edit dist a | 6 | $29 \%$ | 129993 | 131134 | 300 |
|  | fft b | 11 | $69 \%$ | 33646 | 32088 | 300 |
|  | matrix mult b | 10 | $67 \%$ | 151247 | 151612 | 294 |
|  | pci bridge32 b | 8 | $47 \%$ | 29283 | 29417 | 299 |
|  | superblue11 a | 1443 | $59 \%$ | 954445 | 935613 | 284 |
|  | superblue16 a | 419 | $48 \%$ | 698367 | 680450 | 299 |

## Experiment: Setting

- Training:
- Implemented by Pytorch Geometric.
- A Nvidia 2080Ti
- 400 epochs, ~6 hours
- Code Release:
- https://github.com/PKU-IDEA/MacroRank


## Experiment: MRE and Kendall's $\tau$

- EHNN dominates GNN in all groups (MRE).
- MacroRank (=EHNN + LTR) achieves the best Kendall's $\tau$ on all the groups, - 49.5\% better than CNN.



## Experiment: MRE and Kendall's $\tau$

CNN

EHNN


## ${ }^{24}$ Experiment: Top 30 Prediction

|  | MEAN | CNN | GNN | EHNN | MacroRank |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WL | 1 | 0.951 | 1.015 | 0.968 | $\underline{\mathbf{0 . 8 8}}$ |
| \#Vias | 1 | 1.003 | 0.996 | 1.003 | $\underline{\mathbf{0 . 9 8}}$ |
| \#Shorts | 1 | 0.731 | 1.017 | 0.904 | $\underline{\mathbf{0 . 6 6 1}}$ |



## Conclusion

- MacroRank: translation equivariance \& LTR.
- Accurately predict the relative order of the quality of macro placement solutions.
- Improve the Kendall's $\tau$ by 49.5\%
- Improve the average performance of top-30 prediction by $8.1 \%, 2.3 \%$, and $10.6 \%$ on wirelength, vias, and shorts, respectively.
- Future Work
- Integrate the model in macro placement algorithm.


# Thanks! Questions are welcome! 

Email: chenyifan2019@pku.edu.cn

